【題目】某中學(xué)八年級班數(shù)學(xué)課外興趣小組在探究:“邊形共有多少條對角線”這一問題時,設(shè)計了如下表格:
多邊形的邊數(shù) | … | |||||
從多邊形一個頂點出發(fā)可引起的對角線條數(shù) | … | |||||
多邊形對角線的總條數(shù) | … |
探究:假若你是該小組的成員,請把你研究的結(jié)果填入上表;
猜想:隨著邊數(shù)的增加,多邊形對角線的條數(shù)會越來越多,從邊形的一個頂點出發(fā)可引的對角線條數(shù)為多少,邊形對角線的總條數(shù)為多少.
應(yīng)用:個人聚會,每不相鄰的人都握一次手,共握多少次手?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞D點旋轉(zhuǎn),它的兩邊分別交AC、CB(或它們的延長線)于E、F.當∠EDF繞D點旋轉(zhuǎn)到DE⊥AC于E時(如圖1),易證.當∠EDF繞D點旋轉(zhuǎn)到DE和AC不垂直時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立? 若成立,請給予證明;若不成立,,,又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
(1)若AC = 8,CB = 6,求線段MN的長;
(2)若AC = a,MN = b,求線段BC的長用含,的代數(shù)式可以表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個內(nèi)角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若∠BAC=80°,則∠BCA的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當1<x<3時,x2+(b﹣1)x+c<0.
其中正確的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點A(1,a),B是反比例函數(shù)圖象上一點,直線OB與x軸的夾角為α,tanα= .
(1)求k的值.
(2)求點B的坐標.
(3)設(shè)點P(m,0),使△PAB的面積為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為直線AB上的一點,∠COE是直角,OF平分∠AOE(圖中所說的角都是小于平角的角).
(1)如圖1,若∠COF=28°,則∠BOE=______°;若∠COF=則∠BOE=_______;∠BOE與∠COF的數(shù)量關(guān)系為_________;
(2)將∠COE繞點O逆時針旋轉(zhuǎn)到如圖2所示的位置時,(1)中∠BOE和∠COF的數(shù)量關(guān)系否仍然成立?若成立,請說明理由?若不成立,求出∠BOE與∠COF的數(shù)量關(guān)系;
(3)當∠COE繞點O順時針旋轉(zhuǎn)到如圖3的位置時,(1)中∠BOE和∠COF的數(shù)量關(guān)系是否仍然成立?若成立,請說明理由;若不成立,請求出∠BOE與∠COF的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,
(1)以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以B、F為圓心,大于 BF長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF;
(2)四邊形ABEF是(選填矩形、菱形、正方形、無法確定),說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com