【題目】目前“微信”、“支付寶”、“共享單車(chē)”和“網(wǎng)購(gòu)”給我們帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)“你最認(rèn)可的四大新生事物”進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)圖中信息求出=___________,=_____________;
(2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生種,大約有多少人最認(rèn)可“微信”這一新生事物?
【答案】(1)100,35;(2)詳見(jiàn)解析;(3)800人.
【解析】
(1)由共享單車(chē)的人數(shù)以及其所占百分比可求得總?cè)藬?shù)m,用支付寶人數(shù)除以總?cè)藬?shù)可得其百分比n的值;
(2)總?cè)藬?shù)乘以網(wǎng)購(gòu)的百分比可求得網(wǎng)購(gòu)人數(shù),用微信人數(shù)除以總?cè)藬?shù)求得其百分比,由此即可補(bǔ)全兩個(gè)圖形;
(3)總?cè)藬?shù)乘以樣本中微信人數(shù)所占百分比即可求得答案.
(1)抽查的總?cè)藬?shù)m=10÷10%=100,
支付寶的人數(shù)所占百分比n%==35%,所以n=35,
故答案為:100,35;
(2)網(wǎng)購(gòu)人數(shù)為:100×15%=15人,
微信對(duì)應(yīng)的百分比為:,
補(bǔ)全圖形如圖所示:
(3)估算全校2000名學(xué)生種,最認(rèn)可“微信”這一新生事物的人數(shù)為:2000×40%=800人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李和小陸從 A 地出發(fā),騎自行車(chē)沿同一條路行駛到 B 地,他們離出發(fā)地的距離 s和行駛時(shí)間t之間的關(guān)系的圖象如圖,根據(jù)圖象回答下列問(wèn)題:
(1) 小李在途中逗留的時(shí)間為_(kāi)__________h,小陸從 A 地到 B 地的速度是________km/h;
(2) 當(dāng)小李和小陸相遇時(shí),他們離 B 地的路程是____________千米;
(3) 寫(xiě)出小李在逗留之前離 A 地的路程s和行駛時(shí)間t之間的函數(shù)關(guān)系式為_(kāi)____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,七、八年級(jí)根據(jù)初賽成績(jī)各選出5名選手組成代表隊(duì)參加決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
七年級(jí) | a | 85 | b | S七年級(jí)2 |
八年級(jí) | 85 | c | 100 | 160 |
(1)根據(jù)圖示填空:a= ,b= ,c= ;
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)代表隊(duì)的決賽成績(jī)較好?
(3)計(jì)算七年級(jí)代表隊(duì)決賽成績(jī)的方差S七年級(jí)2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線(xiàn)AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說(shuō)明理由;
(2)如圖2,將△ACD沿線(xiàn)段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說(shuō)明理由.
【答案】(1)BF=AC,理由見(jiàn)解析;(2)NE=AC,理由見(jiàn)解析.
【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線(xiàn)的推論可得:AE=EC,由線(xiàn)段垂直平分線(xiàn)的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.
試題解析:
(1)BF=AC,理由是:
如圖1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵,
∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=AC,理由是:
如圖2,由折疊得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=AC.
【題型】解答題
【結(jié)束】
19
【題目】某校學(xué)生會(huì)決定從三明學(xué)生會(huì)干事中選拔一名干事當(dāng)學(xué)生會(huì)主席,對(duì)甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測(cè)試成績(jī)?nèi)缦卤硭荆?/span>
測(cè)試項(xiàng)目 | 測(cè)試成績(jī)/分 | ||
甲 | 乙 | 丙 | |
筆試 | 75 | 80 | 90 |
面試 | 93 | 70 | 68 |
根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對(duì)三人進(jìn)行民主測(cè)評(píng),三人得票率如扇形統(tǒng)計(jì)圖所示(沒(méi)有棄權(quán),每位同學(xué)只能推薦1人),每得1票記1分.
(1)分別計(jì)算三人民主評(píng)議的得分;
(2)根據(jù)實(shí)際需要,學(xué)校將筆試、面試、民主評(píng)議三項(xiàng)得分按3:3:4的比例確定個(gè)人成績(jī),三人中誰(shuí)會(huì)當(dāng)選學(xué)生會(huì)主席?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是兩種長(zhǎng)方形鋁合金窗框,已知窗框的長(zhǎng)都是y米,窗框的寬都是x米,若一用戶(hù)需(1)型的窗框2個(gè),(2)型的窗框2個(gè).
(1)用含x、y的式子表示共需鋁合金的長(zhǎng)度;
(2)若1m鋁合金的平均費(fèi)用為100元,求當(dāng)x=1.2,y=1.5時(shí),鋁合金的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A(0,4)是直角坐標(biāo)系y軸上一點(diǎn),動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),沿x軸正半軸運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,以P為直角頂點(diǎn)在第一象限內(nèi)作等腰Rt△APB.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.
(1)若AB//x軸,求t的值;
(2)當(dāng)t=3時(shí),坐標(biāo)平面內(nèi)有一點(diǎn)M(不與A重合),使得以M、P、B為頂點(diǎn)的三角形和△ABP全等,請(qǐng)求出點(diǎn)M的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)A、B分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長(zhǎng)度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線(xiàn)MN交AB的垂線(xiàn)AD于點(diǎn),求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F,求證:F為DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C是y軸上一點(diǎn)將坐標(biāo)平面沿直線(xiàn)AC折疊,使點(diǎn)B剛好落在x負(fù)半軸上,則點(diǎn)C的坐標(biāo)為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平面直角坐標(biāo)系xOy中,B(0,1),OB=OC=OA,A、C分別在x軸的正負(fù)半軸上.過(guò)點(diǎn)C的直線(xiàn)繞點(diǎn)C旋轉(zhuǎn),交y軸于點(diǎn)D,交線(xiàn)段AB于點(diǎn)E.
(1)求∠OAB的度數(shù)及直線(xiàn)AB的解析式;
(2)若△OCD與△BDE的面積相等,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com