【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長方形地面,請觀察下列圖形,并解答有關(guān)問題:

(1)在第n個圖中,第一橫行共    塊瓷磚,第一豎列共有    塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為   (用含n的代數(shù)式表示,n表示第n個圖形)

(2)上述鋪設(shè)方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;

(3)黑瓷磚每塊4元,白瓷磚每塊3元,在問題(2)中,共需要花多少錢購買瓷磚?

(4)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明.

【答案】(1)(n+3),(n+2),(n+2)(n+3);(2)n=20;(3)共花1604元錢購買瓷磚;(4)不存在黑瓷磚與白瓷磚塊數(shù)相等的情形.

【解析】試題分析:(1)第一個圖形用的正方形的個數(shù)=3×4=12,第二個圖形用的正方形的個數(shù)=4×5=20,第三個圖形用的正方形的個數(shù)=5×6=30…以此類推,根據(jù)發(fā)現(xiàn)的規(guī)律可得在第n個圖中,第一橫行共(n+3) 塊瓷磚,第一豎列共有(n+2) 塊瓷磚,鋪設(shè)地面所用瓷磚的總塊數(shù)為(n+2)(n+3)個;

(2)根據(jù)(1)中的結(jié)果可得(n+2)(n+3)=506,解方程即可得;

(3)根據(jù)(2)得出的結(jié)果,求出白瓷磚和黑瓷磚各有多少塊,分別乘上它們的單價再相加即可;

(4)先假設(shè)黑瓷磚與白瓷磚塊數(shù)相等的情形,根據(jù)黑、白瓷磚數(shù)量相等,看是否得到n的整數(shù)解即可.

試題解析(1)第一個圖形用的正方形的個數(shù)=3×4=12,第二個圖形用的正方形的個數(shù)=4×5=20,第三個圖形用的正方形的個數(shù)=5×6=30…以此類推,在第n個圖中,第一橫行共(n+3) 塊瓷磚,第一豎列共有(n+2) 塊瓷磚,鋪設(shè)地面所用瓷磚的總塊數(shù)為(n+2)(n+3)個

故答案為:(n+3),(n+2),(n+2)(n+3);

(2)根據(jù)題意得:(n+2)(n+3)=506,

解得n1=20,n2=﹣25(不符合題意,舍去);

(3)觀察圖形可知,每﹣橫行有白磚(n+1)塊,每﹣豎列有白磚n塊,因而白磚總數(shù)是n(n+1)塊,n=20時,白磚為20×21=420(塊),黑磚數(shù)為506﹣420=86(塊)

故總錢數(shù)為420×3+86×4=1260+344=1604(元),

答:共花1604元錢購買瓷磚;

(4)根據(jù)題意得:n(n+1)=2(2n+3),

解得n=(不符合題意,舍去),

不存在黑瓷磚與白瓷磚塊數(shù)相等的情形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于AB兩點(diǎn),拋物線AB兩點(diǎn).

1)求這個拋物線的解析式;

2)作垂直x軸的直線x=t,在第一象限交直線AB于點(diǎn)M,交這個拋物線于點(diǎn)N.求當(dāng)t 取何值時,MN有最大值?最大值是多少?

3)在2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(1),下列結(jié)論:abc0;a=b;a=4c﹣4方程有兩個相等的實數(shù)根,其中正確的結(jié)論是______.(只填序號即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5x軸交于點(diǎn)D,直線y=-xx軸及直線x=-5分別交于點(diǎn)C,E.點(diǎn)BE關(guān)于x軸對稱,連接AB.

(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;

(2)SSCDES四邊形ABDO,求S的值;

(3)在求(2)S時,嘉琪有個想法:CDE沿x軸翻折到CDB的位置,而CDB與四邊形ABDO拼接后可看成AOC,這樣求S便轉(zhuǎn)化為直接求AOC的面積,如此不更快捷嗎?但大家經(jīng)反復(fù)驗算,發(fā)現(xiàn)SAOCS,請通過計算解釋他的想法錯在哪里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,E是AD邊上的一個動點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).

(1)求證:△BGF≌△FHC;

(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2=0

(1)當(dāng)m取何值時,方程有兩個相等的實數(shù)根;

(2)為m選取一個合適的整數(shù),使方程有兩個不相等的實數(shù)根,并求出這兩個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段MN=3cm,在線段MN上取一點(diǎn)P,使PMPN;延長線段MN到點(diǎn)A,使ANMN;延長線段NM到點(diǎn)B,使BN=3BM.

(1)根據(jù)題意,畫出圖形;

(2)求線段AB的長;

(3)試說明點(diǎn)P是哪些線段的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,23,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.

小明畫出樹狀圖如圖所示:

小華列出表格如下:

回答下列問題:

1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機(jī)抽出一張卡片后 (填放回不放回),再隨機(jī)抽出一張卡片;

2)根據(jù)小華的游戲規(guī)則,表格中表示的有序數(shù)對為 ;

3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為誰獲勝的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲和乙同時從學(xué)校放學(xué),兩人以各自送度勻速步行回家,甲的家在學(xué)校的正西方向,乙的家在學(xué)校的正東方向,乙家離學(xué)校的距離比甲家離學(xué)校的距離遠(yuǎn)3900米,甲準(zhǔn)備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習(xí)冊.于是立即步去追乙,終于在途中追上了乙并交還了練習(xí)冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學(xué)校出發(fā)的時間x分鐘的函數(shù)關(guān)系圖,則甲的家和乙的家相距_____米.

查看答案和解析>>

同步練習(xí)冊答案