(1)如圖,點(diǎn)A、B、C、D在一條直線上,填寫下列空格:
∵EC∥FD(已知),
∴∠F=∠
 
 
).
∵∠F=∠E(已知),
∴∠
 
=∠E(
 
),
 
 
 
).
(2)說出(1)的推理中運(yùn)用了哪兩個(gè)互逆的真命題.
考點(diǎn):平行線的判定與性質(zhì)
專題:推理填空題
分析:(1)由EC與FD平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,再由已知角相等,等量代換得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行即可得證.
解答:解:(1)∵EC∥FD(已知),
∴∠F=∠1(兩直線平行,內(nèi)錯(cuò)角相等).
∵∠F=∠E(已知),
∴∠1=∠E(等量代換),
∴AE∥BF(內(nèi)錯(cuò)角相等,兩直線平行),
故答案為:1,(兩直線平行,內(nèi)錯(cuò)角相等),1,等量代換,(AE,BF),(內(nèi)錯(cuò)角相等,兩直線平行);
(2)內(nèi)錯(cuò)角相等,兩直線平行與兩直線平行,內(nèi)錯(cuò)角相等.
點(diǎn)評(píng):此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列根式2
xy
,
8
x2-y2
,
ab
2
x2+4
中,最簡二次根式的個(gè)數(shù)是( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的邊長AB=6,BC=4,點(diǎn)F在DC上,DF=2.動(dòng)點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿射線DA、線段BA向點(diǎn)A的方向運(yùn)動(dòng),當(dāng)動(dòng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)A時(shí),M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連結(jié)FM、MN、FN,當(dāng)F、N、M不在同一條直線時(shí),可得△FMN,過△FMN三邊的中點(diǎn)作△PQW.設(shè)動(dòng)點(diǎn)M、N的速度都是1個(gè)單位/秒,M、N運(yùn)動(dòng)的時(shí)間為x秒.試解答下列問題:
(1)證明:△FMN∽△QWP;
(2)試問x(0≤x≤4)為何值時(shí),△PQW為直角三角形?
(3)問當(dāng)x為何值時(shí),線段MN最短?求此時(shí)MN的值.
(4)問當(dāng)x為何值時(shí),半徑為1的⊙M與半徑為NB的⊙N相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(-1,0),請(qǐng)解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點(diǎn)為點(diǎn)D,對(duì)稱軸與x軸交于點(diǎn)E,連接BD,求BD的長.
注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

因式分解:
(1)x4+y4+z4-2x2y2-2y2z2-2x2z2
(2)x7+x5+1
(3)(x+y-2xy)(x+y-2)+(xy-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

1
2
mn2-
1
3
m2n-mn2-(m2n-
1
2
m2n+
1
6
mn2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:27x3-64=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組:
2x+3y=8
3x-2y=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)C1:y=x2+2ax+2x-a+1,且a變化時(shí),二次函數(shù)C1的圖象頂點(diǎn)M總在拋物線C2上.
(1)用含有a的式子表示頂點(diǎn)M的坐標(biāo),并求出拋物線C2的函數(shù)解析式;
(2)若拋物線C2的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,設(shè)E是y軸右側(cè)拋物線上一點(diǎn),過點(diǎn)E作直線AC的平行線交x軸于點(diǎn)F,且滿足EF=
1
2
AC,求點(diǎn)E的坐標(biāo);
(3)若P是拋物線C2對(duì)稱軸上使△ABC的周長取得最小值的點(diǎn),過點(diǎn)P任意作一條與y不平行的直線l交拋物線于M、N兩點(diǎn),當(dāng)y軸平分MN時(shí),求直線l的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案