【題目】先閱讀下列解題過程,然后解答問題⑴、⑵,解方程:。
解:①當3x≥0時,原方程可化為一元一次方程3x=1,它的解是;
②當3x≤0時,原方程可化為一元一次方程-3x=1,它的解是。
⑴請你根據(jù)以上理解,解方程:;
⑵探究:當b為何值時,方程,①無解;②只有一個解;③有兩個解。
【答案】(1)或;(2)①;②;③.
【解析】
(1)當x3≥0時,得出方程為2(x3)+5=13,求出方程的解即可;當x3<0時,得出方程為2(3x)+5=13,求出方程的解即可;
(2)根據(jù)絕對值具有非負性得出|x2|≥0,分別求出b+1<0,b+1=0,b+1>0的值,即可求出答案.
(1)解:當x3≥0時,
原方程可化為一元一次方程為2(x3)+5=13,
方程的解是x=7;
②當x3<0時,
原方程可化為一元一次方程為2(3x)+5=13,
方程的解是x=1.
(2)解:∵|x2|≥0,
∴當b+1<0,即b<1時,方程無解;
當b+1=0,即b=1時,方程只有一個解;
當b+1>0,即b>1時,方程有兩個解.
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜公司收購蔬菜進行銷售的獲利情況如下表所示:
銷售方式 | 直接銷售 | 粗加工后銷售 | 精加工后銷售 |
每噸獲利(元) | 100 | 250 | 450 |
現(xiàn)在該公司收購了140噸蔬菜,已知該公司每天能精加工蔬菜6噸和粗加工蔬菜16噸(兩種加工不能同時進行)。
(1)如果要求在18天內(nèi)全部銷售這140噸蔬菜,請完成下列表格:
銷售方式 | 全部直接銷售 | 全部粗加工后銷售 | 盡量精加工,剩余部分直接銷售 |
獲利(元) |
(2)如果先進行精加工,來不及精加工的進行粗加工,要求15天內(nèi)剛好加工完這140噸蔬菜,則應如何分配加工時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,已知⊙O是△ABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.
(1)求⊙O的半徑;
(2)請用尺規(guī)作圖作出點P,使得點P在優(yōu)弧CAB上時,△PBC的面積最大,請保留作圖痕跡,并求出△PBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明設計的“作一個以已知線段為對角線正方形”的尺規(guī)作圖過程.
已知:線段AC
求證:四邊形ABCD為正方形
作法:如圖,
①作線段AC的垂直平分線MN 交AC于點O;
②以點O為圓心CO長為半徑畫圓,交直線MN于點B,D;
③順次連接AB,BC,CD,DA;
所以四邊形ABCD為所作正方形.
根據(jù)小明設計的尺規(guī)作圖過程,完成以下任務.
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OA=OB,OC=OD,
∴四邊形 ABCD為平行四邊形.(__________________)(填寫推理依據(jù))
∵OA=OB=OC=OD即AC=BD.
∴ABCD為 (__________________)(填寫推理依據(jù)).
∵ AC⊥BD,
∴四邊形 ABCD為正方形(__________________________).(填寫推理依據(jù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 某公司有甲、乙兩類經(jīng)營收入,其中去年乙類收入為萬元,去年甲類收入是乙類收入的2倍,預計今年甲類年收入減少9%,乙類收入將增加19%.今年該公司的年總收入比去年增加__________萬元(用字母來表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠加工齒輪,已知每1塊金屬原料可以加工成3個A齒輪或4個B齒輪(說明:每塊金屬原料無法同時既加工A齒輪又加B齒輪),已知1個A齒輪和2個B齒輪組成一個零件,為了加工更多的零件,要求A、B齒輪恰好配套.請列方程解決下列問題:
(1)現(xiàn)有25塊相同的金屬原料,問最多能加工多少個這樣的零件?
(2)若把36塊相同的金屬原料全部加工完,問加工的A、B齒輪恰好配套嗎?說明理由
(3)若把n塊相同的金屬原料全部加工完,為了使這樣加工出來的A、B齒輪恰好配套,請求出n所滿足的條件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,PA是⊙O的一條切線,切點為A,連接PO并延長,交⊙O于點B,過點A作AC⊥PB交⊙O于點C、交PB于點D,連接BC,當∠P=30°時,
(1)求弦AC的長;
(2)求證:BC∥PA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中俄“海上聯(lián)合—2014”反潛演習中,我軍艦A測得潛艇C的俯角為300.位于軍艦A正上方1000米的反潛直升機B側(cè)得潛艇C的俯角為680,試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度。(結(jié)果保留整數(shù)。參考數(shù)據(jù):sin680≈0.9,cos680≈0.4,,tan680≈2.5. ≈1.7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com