【題目】如圖,已知⊙O的半徑為5,PA是⊙O的一條切線,切點為A,連接PO并延長,交⊙O于點B,過點A作AC⊥PB交⊙O于點C、交PB于點D,連接BC,當(dāng)∠P=30°時,
(1)求弦AC的長;
(2)求證:BC∥PA.
【答案】(1)5;(2)證明見解析.
【解析】試題分析:(1)連接OA,由于PA是⊙O的切線,從而可求出∠AOD=60°,由垂徑定理可知:AD=DC,由銳角三角函數(shù)即可求出AC的長度.
(2)由于∠AOP=60°,所以∠BOA=120°,從而由圓周角定理即可求出∠BCA=60°,從而可證明BC∥PA
試題解析:(1)連接OA,∵PA是⊙O的切線,∴∠PAO=90°.
∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB過圓心O,∴AD=DC.
在Rt△ODA中,AD=OAsin60°=,∴AC=2AD=;
(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA,∴BC∥PA.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,其邊長為2,點A,點C分別在軸,軸的正半軸上.函數(shù)的圖象與CB交于點D,函數(shù)(為常數(shù),)的圖象經(jīng)過點D,與AB交于點E,與函數(shù)的圖象在第三象限內(nèi)交于點F,連接AF、EF.
(1)求函數(shù)的表達(dá)式,并直接寫出E、F兩點的坐標(biāo).
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,點P是y軸負(fù)半軸上一動點,過點P作y軸的垂線交圖象于A,B兩點,連接OA、OB.下列結(jié)論:
①若點M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;
②當(dāng)點P坐標(biāo)為(0,﹣3)時,△AOB是等腰三角形;
③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;
④當(dāng)點P移動到使∠AOB=90°時,點A的坐標(biāo)為(,).
其中正確的結(jié)論個數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com