【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EFGH(線段端點在格點上),

選取其中三條線段,使得這三條線段能圍成一個直角三角形.

答:選取的三條線段為

只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標上必要的字母).

答:畫出的直角三角形為△

所畫直角三角形的面積為

【答案】AB、EF、GH ⑵詳見解析; 5

【解析】

由圖可知AB=5,CD= ,EF= ,GH= ,(1)由勾股定理的逆定理可得,由AB、EFGH 可以組成直角三角形;(2)在圖中畫GM=EF,HM=AB即可得到該直角三角形;(3)三角形GMH的面積=HGMG.

解:(1)由圖可知AB=5,CD= ,EF= ,GH= ,

, ,

∴由AB,EF,GH可組成直角三角形.

(2)如圖,三角形MGH即為所示.

如圖,可畫直角三角形MGH.

(3) = =5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結論:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正確的有(
A.1個
B.2 個
C.3 個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)

(1)若△A1B1C1與△ABC關于y軸成軸對稱,則△A1B1C1三個頂點坐標分別為A1_____,B1_____,C1_____

(2)在y軸上是否存在點Q.使得SACQ=SABC,如果存在,求出點Q的坐標,如果不存在,說明理由;

(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE BC 邊的中線,過點C CF⊥AE,垂足為點 F,過點 B BD⊥BC CF 的延長線于點 D.

(1)試證明:AE=CD;

(2)若 AC=12cm,求線段 BD 的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在直角坐標系xoy中,直線l:y=kx+b交x軸,y軸于點E,F(xiàn),點B的坐標是(2,2),過點B分別作x軸、y軸的垂線,垂足為A、C,點D是線段CO上的動點,以BD為對稱軸,作與△BCD或軸對稱的△BC′D.

(1)當∠CBD=15°時,求點C′的坐標.
(2)當圖1中的直線l經(jīng)過點A,且k=﹣ 時(如圖2),求點D由C到O的運動過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當圖1中的直線l經(jīng)過點D,C′時(如圖3),以DE為對稱軸,作于△DOE或軸對稱的△DO′E,連結O′C,O′O,問是否存在點D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個長為8分米,寬為5分米高為7分米的長方體上,截去一個長為6分米,寬為5分米,深為2分米的長方體后得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:全等三角形對應邊上的中線相等(請根據(jù)圖形,寫出已知、求證、證明)

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是梯形,ADBC,A=90°,BC=BD,CEBD,垂足為E.

(1)求證:ABD≌△ECB;

(2)若DBC=50°,求DCE的度數(shù).

查看答案和解析>>

同步練習冊答案