如圖點B到直線a的距離是線段________的長度.

BC
分析:根據(jù)點到直線距離的定義進行解答即可.
解答:∵BC⊥a,
∴點B到直線a的距離是線段BC的長度.
故答案為:BC.
點評:本題考查的是點到直線距離的定義,即直線外一點到直線的垂線段的長度,叫做點到直線的距離.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準(zhǔn)等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準(zhǔn)等距點.
(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點.
(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點.(尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.試說明點P是四邊形ABCD的準(zhǔn)等距點.
(4)試研究四邊形的準(zhǔn)等距點個數(shù)的情況.(說出相應(yīng)四邊形的特征及此時準(zhǔn)等距點的個數(shù),不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•保定一模)四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準(zhǔn)等距點.如圖,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準(zhǔn)等距點.
(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點.
(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準(zhǔn)等距點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準(zhǔn)等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準(zhǔn)等距點.
(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點.
(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準(zhǔn)等距點.
(4)試研究四邊形的準(zhǔn)等距點個數(shù)的情況.(說出相應(yīng)四邊形的特征及此時準(zhǔn)等距點的個數(shù),不必證明)
①當(dāng)四邊形的對角線互相垂直且任何一條對角線不平分另一條對角線或者對角線互相平分且不垂直時,準(zhǔn)等距點的個數(shù)為
0
0
個;
②當(dāng)四邊形的對角線既不垂直,又不互相平分,且有一條對角線的中垂線經(jīng)過另一對角線的中點時,準(zhǔn)等距點的個數(shù)為
1
1
個;
③當(dāng)四邊形的對角線既不垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點時,準(zhǔn)等距點的個數(shù)為
2
2
個;
④當(dāng)四邊形的對角線互相垂直且至少有一條對角線平分另一條對角線時,準(zhǔn)等距點有
無數(shù)
無數(shù)
個(注意點P不能畫在對角線的中點上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準(zhǔn)等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準(zhǔn)等距點.
(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點.
(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點(尺規(guī)作圖,保留作圖痕跡不要求寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

(2006河北課改,17)如圖所示,一段街道的兩邊緣所在直線分別為ABPQ,并且ABPQ,建筑物的一端DE所在的直線MNAB于點M,交PQ于點N,小亮從勝利街的A處,沿著AB方向前進,小明一直站在點P的位置等候小亮.

(1)請你在圖10中畫出小亮恰好能看見小明時的視線,以及此時小亮所在位置(用點C標(biāo)出);

(2)已知:MN=20m,MD=8m,PN=24m,求(1)中的點C到勝利街口的距

CM

查看答案和解析>>

同步練習(xí)冊答案