【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=﹣在第二象限內(nèi)的圖象相交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B,與y軸的負(fù)半軸交于點(diǎn)C.
(1)求∠BCO的度數(shù);
(2)若y軸上一點(diǎn)M的縱坐標(biāo)是4,且AM=BM,求點(diǎn)A的坐標(biāo);
(3)在(2)的條件下,若點(diǎn)P在y軸上,點(diǎn)Q是平面直角坐標(biāo)系中的一點(diǎn),當(dāng)以點(diǎn)A、M、P、Q為頂點(diǎn)的四邊形是菱形時,請直接寫出點(diǎn)Q的坐標(biāo).
【答案】(1)∠BCO=45°;(2)A(﹣4,1);(3)點(diǎn)Q坐標(biāo)為(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).
【解析】
(1)證明△OBC是等腰直角三角形即可解決問題;
(2)如圖1中,作MN⊥AB于N.根據(jù)一次函數(shù)求出交點(diǎn)N的坐標(biāo),用b表示點(diǎn)A坐標(biāo),再利用待定系數(shù)法即可解決問題;
(3)分兩種情形:①當(dāng)菱形以AM為邊時,②當(dāng)AM為菱形的對角線時,分別求解即可.
(1)∵一次函數(shù)y=﹣x+b的圖象交x軸于B,交y軸于C,則B(b,0),C(0,b),
∴OB=OC=﹣b,
∵∠BOC=90°
∴△OBC是等腰直角三角形,
∴∠BCO=45°.
(2)如圖1中,作MN⊥AB于N,
∵M(0,4),MN⊥AC,直線AC的解析式為:y=﹣x+b,
∴直線MN的解析式為:y=x+4,
聯(lián)立,解得:,
∴N(,),
∵MA=MB,MN⊥AB,
∴NA=BN,設(shè)A(m,n),
則有,解得:,
∴A(﹣4,b+4),
∵點(diǎn)A在y=﹣上,
∴﹣4(b+4)=﹣4,
∴b=﹣3,
∴A(﹣4,1);
(3)如圖2中,
由(2)可知A(﹣4,1),M(0,4),
∴AM==5,
當(dāng)菱形以AM為邊時,AQ=AQ′=5,AQ∥OM,可得Q(﹣4,﹣4),Q′(﹣4,6),
當(dāng)A,Q關(guān)于y軸對稱時,也滿足條件,此時Q(4,1),
當(dāng)AM為菱形的對角線時,設(shè)P″(0,b),
則有(4﹣b)2=42+(b﹣1)2,
∴b=﹣.
∴AQ″=MP″=,
∴Q″(﹣4,),
綜上所述,滿足條件的點(diǎn)Q坐標(biāo)為(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,O是對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交DA,BC的延長線于E,F.
(1)求證:AE=CF;
(2)若AE=BC,試探究線段OC與線段DF之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年5月的第二個星期日即為母親節(jié),“父母恩深重,恩憐無歇時”,許多市民喜歡在母親節(jié)為母親送花,感恩母親,祝福母親.今年節(jié)日前夕,某花店采購了一批康乃馨,經(jīng)分析上一年的銷售情況,發(fā)現(xiàn)這種康乃馨每天的銷售量y(支)是銷售單價x(元)的一次函數(shù),已知銷售單價為7元/支時,銷售量為16支;銷售單價為8元/支時,銷售量為14支.
(1)求這種康乃馨每天的銷售量y(支)關(guān)于銷售單價x(元/支)的一次函數(shù)解析式;
(2)若按去年方式銷售,已知今年這種康乃馨的進(jìn)價是每支5元,商家若想每天獲得42元的利潤,銷售單價要定為多少元?
(3)在(2)的條件下,當(dāng)銷售單價x為何值時,花店銷售這種康乃馨每天獲得的利潤最大?并求出獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A為反比例函數(shù)y=(其中x>0)圖象上的一點(diǎn),在x軸正半軸上有一點(diǎn)B,OB=4.連接OA、AB,且OA=AB=2.
(1)求k的值;
(2)過點(diǎn)B作BC⊥OB,交反比例函數(shù)y=(x>0)的圖象于點(diǎn)C.
①連接AC,求△ABC的面積;
②在圖上連接OC交AB于點(diǎn)D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場一種商品的進(jìn)價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)與x軸分別交于A(﹣3,0),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣1,4),對稱軸交x軸于點(diǎn)F.
(1)請直接寫出這條拋物線和直線AE、直線AC的解析式;
(2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;
(3)如圖2,點(diǎn)D是拋物線上一動點(diǎn),它的橫坐標(biāo)為m,且﹣3<m<﹣1,過點(diǎn)D作DK⊥x軸于點(diǎn)K,DK分別交線段AE、AC于點(diǎn)G、H.在點(diǎn)D的運(yùn)動過程中,
①DG、GH、HK這三條線段能否相等?若相等,請求出點(diǎn)D的坐標(biāo);若不相等,請說明理由;
②在①的條件下,判斷CG與AE的數(shù)量關(guān)系,并直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,4),雙曲線的圖像經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)商店銷售一種紀(jì)念品,每件的進(jìn)貨價為40元.經(jīng)市場調(diào)研,當(dāng)該紀(jì)念品每件的銷售價為50元時,每天可銷售200件;當(dāng)每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件.
(1)當(dāng)銷售該紀(jì)念品每天能獲得利潤2160元時,每件的銷售價應(yīng)為多少?
(2)當(dāng)每件的銷售價為多少時,銷售該紀(jì)念品每天獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為的中,點(diǎn)是劣弧的中點(diǎn),點(diǎn)是優(yōu)弧上一點(diǎn),,下列四個結(jié)論:①;②;③;④四邊形是菱形.其中正確結(jié)論的序號是( )
A.①③B.②④C.②③④D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com