如果直線a∥b,且直線c⊥a,則直線c與b的位置關(guān)系________(填“平行”或“垂直”).

垂直
分析:由已知可以發(fā)現(xiàn),直線c垂直于兩平行線a、b中的一條a,則必與另一條b垂直.
解答:解:∵a∥b,
∴∠1=∠2;
∵c⊥a,
∴∠1=90°,
∴∠2=90°,
∴c⊥b
點評:此題主要考查:垂直于平行線中的一條的直線,必與另一條垂直.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,
(1)正方形ABCD及等腰Rt△AEF有公共頂點A,∠EAF=90°,連接BE、DF.將Rt△AEF繞點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;
(2)將(1)中的正方形ABCD變?yōu)榫匦蜛BCD,等腰Rt△AEF變?yōu)镽t△AEF,且AD=kAB,AF=kAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;
(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅蜛BCD,將Rt△AEF變?yōu)椤鰽EF,且∠BAD=∠EAF=a,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用a表示出直線BE、DF形成的銳角β.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,人工噴泉有一個豎直的噴水槍AB,噴水口A距地面2米,噴水水流的軌跡是拋物線,如果要求水流的最高點P到噴水槍AB所在直線的距離為1米,且水流著地點C距離水槍底部B的距離為
52
米,那么水流的最高點距離地面是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以電視塔OC所在的直線為y軸,垂直于OC的直線OA為x軸建立直角坐標(biāo)系,測得山坡坡角A距電視塔腳O的距離為300米,在A處觀察塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,如果山坡坡度為
1
2
,且測傾器的高度不計,請回答下列問題:
(1)直接寫出A,C兩點的坐標(biāo):A
(300,0)
(300,0)
  C
(0,300
3
(0,300
3

(2)求點P的鉛直高度.(結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省汕頭市潮陽區(qū)2011年初中畢業(yè)生學(xué)業(yè)考試模擬考數(shù)學(xué)試題 題型:044

閱讀下面的材料:

在平面幾何中,我們學(xué)過兩條直線平行和垂直的定義.下面就兩個一次函數(shù)的圖象所確定的兩條直線,給出它們平行和垂直的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直l2,若k1=k2,且b1≠b2,則直線l1與直線l1互相平行.若k1·k2=-1,則直線l1與直線l2互相垂直.

解答下面的問題:

(1).求過點P(1,4)且與已知直線y=-2x-1平行的直線l的函數(shù)表達(dá)式.

(2).設(shè)直線l分別與y軸、x軸交于點A、B,如果直線m:y=kx+t(t>0)與直線l垂直且交y軸于點C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

以電視塔OC所在的直線為y軸,垂直于OC的直線OA為x軸建立直角坐標(biāo)系,測得山坡坡角A距電視塔腳O的距離為300米,在A處觀察塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,如果山坡坡度為數(shù)學(xué)公式,且測傾器的高度不計,請回答下列問題:
(1)直接寫出A,C兩點的坐標(biāo):A______ C______
(2)求點P的鉛直高度.(結(jié)果保留根號形式)

查看答案和解析>>

同步練習(xí)冊答案