【題目】﹣14+3tan30°﹣ +(2017+π)0+( 2

【答案】解:﹣14+3tan30°﹣ +(2017+π)0+( 2

=﹣1+3× +1+4

=4+

=4


【解析】先依據(jù)有理數(shù)的乘方法則、特殊銳角三角函數(shù)值、零指數(shù)冪的性質(zhì)、負(fù)整數(shù)指數(shù)冪的性質(zhì)進(jìn)行化簡,然后再依據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.
【考點(diǎn)精析】關(guān)于本題考查的零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì),需要了解零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由一些棱長都為1的小正方體組合成的簡單幾何體.

該幾何體的表面積含下底面______

請畫出這個(gè)幾何體的三視圖并用陰影表示出來;

如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的主視圖和俯視圖不變,那么最多可以再添加______個(gè)小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE、BE,若△ABE是等邊三角形,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=3BAB=10,AC=4,AD平分BAC,交BC于點(diǎn)DCEADE,則CE= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)Pa,b),若點(diǎn)P的坐標(biāo)為(akb,kab)(其中k為常數(shù),且k≠0),則稱點(diǎn)P為點(diǎn)Pk屬派生點(diǎn)

例如:P1,4)的“2屬派生點(diǎn)P12×42×14),即P96).

1)點(diǎn)P(-1,6)的“2屬派生點(diǎn)P的坐標(biāo)為_____________

2)若點(diǎn)P“3屬派生點(diǎn)P的坐標(biāo)為(6,2),則點(diǎn)P的坐標(biāo)___________;

3)若點(diǎn)Px軸的正半軸上,點(diǎn)Pk屬派生點(diǎn)P點(diǎn),且線段PP的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底仰角為60°,沿坡度為1: 的坡面AB向上行走到B處,測得廣告牌頂部C的仰角為45°,又知AB=10m,AE=15m,求廣告牌CD的高度(精確到0.1m,測角儀的高度忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、②分別是某種型號跑步機(jī)的實(shí)物圖與示意圖,已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m). (參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2008年奧運(yùn)會(huì)期間,一輛大巴車在一條南北方向的道路上來回運(yùn)送旅客,某一天早晨該車從A地出發(fā),晚上到達(dá)B地,預(yù)定向北為正方向,當(dāng)天行駛記錄如下(單位:千米)

+18,-9,+7,-14,-6+13,-6-8

請你根據(jù)計(jì)算回答下列問題:

1B地在A地何方?相距多少千米?

2)該車這一天共行駛多少千米?

3)若該車每千米耗油0.4升,這一天共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,一定長為半徑作圓弧,分別交AD、AB于點(diǎn)E、F;再分別以點(diǎn)E、F為圓心,大于 EF的長為半徑作弧,兩弧交于點(diǎn)G;作射線AG,交邊CD于點(diǎn)H.若AB=6,AD=4,則四邊形ABCH的周長與三角形ADH的周長之差為(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習(xí)冊答案