【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD=,求的值.
(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.
【答案】(1)證明見解析;(2);(3)
【解析】試題分析:(1)過O作OF⊥AB于F,由角平分線上的點(diǎn)到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD=;(3)先由勾股定理求得AE的長,再證明△B0F∽△BAC,得,設(shè)BO="y" ,BF=z,列二元一次方程組即可解決問題.
試題解析:(1)證明:作OF⊥AB于F
∵AO是∠BAC的角平分線,∠ACB=90
∴OC=OF
∴AB是⊙O的切線
(2)連接CE
∵AO是∠BAC的角平分線,
∴∠CAE=∠CAD
∵∠ACE所對的弧與∠CDE所對的弧是同弧
∴∠ACE=∠CDE
∴△ACE∽△ADC
∴= tanD=
(3)先在△ACO中,設(shè)AE=x,
由勾股定理得
(x+3)="(2x)" +3 ,解得x="2,"
∵∠BFO=90°=∠ACO
易證Rt△B0F∽Rt△BAC
得,
設(shè)BO=y BF=z
即4z=9+3y,4y=12+3z
解得z=y=
∴AB=+4=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4 , 則S1+2S2+2S3+S4=( )
A.5
B.4
C.6
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個條件,這個條件不可以是( 。
A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) , 可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 , 則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個六棱柱的頂點(diǎn)個數(shù)、棱的條數(shù)、面的個數(shù)分別是( 。
A. 6、12、6 B. 12、18、8
C. 18、12、6 D. 18、18、24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏為了解我市的空氣質(zhì)量情況,從環(huán)境監(jiān)測網(wǎng)隨機(jī)抽取了若干天的空氣質(zhì)量情況作為樣本進(jìn)行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
請你根據(jù)圖中提供的信息,解答下列問題:
(1)計算被抽取的天數(shù);
(2)請補(bǔ)全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示優(yōu)的扇形的圓心角度數(shù);
(3)請估計該市這一年(365天)達(dá)到優(yōu)和良的總天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“囧”像一個人臉郁悶的神情.如圖,邊長為a的正方形紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分),設(shè)剪去的兩個小直角三角形的兩直角邊長分別為x、y,剪去的小長方形長和寬也分別為x,y.
(1)用式子表示“囧”的面積S;(用含a、x、y的式子表示)
(2)當(dāng)a=7,x=π,y=2時,求S(π取3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F為對角線AC上的兩點(diǎn),且AE=CF,連接DE、BF,
(1)寫出圖中所有的全等三角形;
(2)求證:DE∥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A.(3x2)3=9x6
B.a6÷a2=a3
C.(a+b)2=a2+b2
D.22014﹣22013=22013
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com