定義:平面向量
a
=(x1,y1) , 
b
=(x2,y2)
,
a
b
數(shù)量積的運(yùn)算為
a
b
=x1x2+y1y2
,如果
a
=(1 , -3)
,
b
=(-2 , 4)
,則
a
b
=( 。
分析:根據(jù)題意,結(jié)合數(shù)量積的表達(dá)式直接進(jìn)行計(jì)算即可.
解答:解:由題意得
a
b

=1×(-2)+(-3)×4
=-2-12
=-14.
故選A.
點(diǎn)評(píng):本題考查了平面向量的知識(shí),解答本題關(guān)鍵是仔細(xì)審題,理解數(shù)量積的運(yùn)算法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:
AB
、
BA
、
AC
、
CA
、
AD
、
DA
、
BD
、
DB
(由于
AB
DC
是相等向量,因此只算一個(gè)).
(1)作兩個(gè)相鄰的正方形(如圖一).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2),試求f(2)的值;
精英家教網(wǎng)
(2)作n個(gè)相鄰的正方形(如圖二)“一字型”排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(n),試求f(n)的值;
精英家教網(wǎng)
(3)作2×3個(gè)相鄰的正方形(如圖三)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2×3),試求f(2×3)的值;
精英家教網(wǎng)
(4)作m×n個(gè)相鄰的正方形(如圖四)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(m×n),試求f(m×n)的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:
AB
BA
、
AC
CA
、
AD
、
DA
、
BD
、
DB
(由于
AB
DC
是相等向量,因此只算一個(gè)).
(1)作兩個(gè)相鄰的正方形(如圖1).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2),試直接寫(xiě)出f(2)的值;
(2)作n個(gè)相鄰的正方形(如圖2)“一字型”排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(n),試直接寫(xiě)出f(n)的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省蚌埠市二中高一自主招生數(shù)學(xué)試卷(解析版) 題型:解答題

定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:、、、、、(由于是相等向量,因此只算一個(gè)).
(1)作兩個(gè)相鄰的正方形(如圖一).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2),試求f(2)的值;

(2)作n個(gè)相鄰的正方形(如圖二)“一字型”排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(n),試求f(n)的值;

(3)作2×3個(gè)相鄰的正方形(如圖三)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2×3),試求f(2×3)的值;

(4)作m×n個(gè)相鄰的正方形(如圖四)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(m×n),試求f(m×n)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義:平面向量
a
=(x1y1) , 
b
=(x2y2)
,
a
b
數(shù)量積的運(yùn)算為
a
b
=x1x2+y1y2
,如果
a
=(1 , -3)
,
b
=(-2 , 4)
,則
a
b
=(  )
A.-14B.-11C.10D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案