【題目】青春期男、女生身高變化情況不盡相同,如圖是小軍和小蕊青春期身高的變化情況.

(1)如圖反映了哪兩個變量之間的關(guān)系?自變量是什么?因變量是什么?

(2)A,B兩點(diǎn)表示什么?

(3)小蕊10歲時身高多少?

【答案】(1)反映了身高和年齡的關(guān)系,自變量是年齡,因變量是身高;(2)A點(diǎn)表示小軍和小蕊在11歲半時身高都是143 cm,B點(diǎn)表示小軍和小蕊在15歲時身高都是156 cm;(3)127cm

【解析】

試題(1)根據(jù)橫坐標(biāo)與縱坐標(biāo)表示的量解答;

(2)根據(jù)交點(diǎn)的縱坐標(biāo)相等可知二人身高相等;

(3)根據(jù)平面直角坐標(biāo)系確定橫坐標(biāo)為10時的身高值即可.

試題解析:

解:(1)反映了身高隨年齡的變化而變化的關(guān)系,自變量是年齡,因變量是身高;

(2)A點(diǎn)表示小軍和小蕊在11歲半時身高都是143厘米,B點(diǎn)表示小軍和小蕊在15歲時身高都是156厘米;

(3)小蕊10歲時身高127厘米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀以下內(nèi)容:

已知實(shí)數(shù)x,y滿足x+y=2,且求k的值.

三位同學(xué)分別提出了以下三種不同的解題思路:

甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.

乙同學(xué):先將方程組中的兩個方程相加,再求k的值.

丙同學(xué):先解方程組,再求k的值.

(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對你選擇的思路進(jìn)行簡要評價.

(評價參考建議:基于觀察到題目的什么特征設(shè)計的相應(yīng)思路,如何操作才能實(shí)現(xiàn)這些思路、運(yùn)算的簡潔性,以及你依此可以總結(jié)什么解題策略等等)

請先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,分別在軸,軸上,軸,軸.點(diǎn)從點(diǎn)出發(fā),以1個單位長度/秒的速度,沿五邊形的邊順時針勻速運(yùn)動一周,若順次連接,,三點(diǎn)所圍成的三角形的面積為,點(diǎn)運(yùn)動的時間為秒,已知之間的函數(shù)關(guān)系如圖②中折線所示.

(1)圖①中點(diǎn)的坐標(biāo)為   ;點(diǎn)的坐標(biāo)為   ;

(2)求圖②中所在直線的解析式;

(3)是否存在點(diǎn),使的面積為五邊形的面積的?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y1=2x+3與直線l2:y2=kx-1交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)為-1,且直線l1x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l2y軸交于點(diǎn)C.

(1)直線l2對應(yīng)的函數(shù)表達(dá)式;

(2)連接BC,求SABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為 的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=4,則OP的長為(
A.1
B.
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(1)班的宣傳委員在辦黑板報時,采用了下面的圖案作為邊框,其中每個黑色六邊形與6個自色六邊形相鄰,若一段邊框上有25個黑色六邊形,則這段邊框共有白色六邊形

A. 100 B. 102 C. 98 D. 150

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

國際比賽的足球場長在100m110m之間,寬在64m75m之間,為了迎接2015年的亞洲杯,某地建設(shè)了一個長方形的足球場,其長是寬的1.5倍,面積是7560m2請你判斷這個足球場能用于國際比賽嗎?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知點(diǎn)A、B是反比例函數(shù)y=﹣ 上在第二象限內(nèi)的分支上的兩個點(diǎn),點(diǎn)C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案