【題目】為了豐富同學們的課余生活,冬威中學開展以我最喜歡的課外活動小組為主題的調(diào)查活動,圍繞在繪畫、剪紙、舞蹈、書法四類活動小組中,你最喜歡的哪一類?的問題,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,將調(diào)查結果整理后繪制成如圖所示的不完整的條形統(tǒng)計圖,其中最喜歡繪畫小組的學生人數(shù)占所調(diào)查人數(shù)的,請你根據(jù)圖中提供的信息回答下列問題:

1)在這次調(diào)查中,一共抽取了多少名學生;

2)請通過計算補全條形統(tǒng)計圖;

3)若冬威中學共有800名學生,請你估計該中學最喜歡剪紙小組的學生有多少名.

【答案】150;(2)見解析;(3320

【解析】

1)根據(jù)最喜歡繪畫小組的學生人數(shù)占所調(diào)查人數(shù)的30%求出總?cè)藬?shù)即可;

2)先求出最喜歡舞蹈的學生人數(shù),進而補全條形統(tǒng)計圖即可;

3)根據(jù)題意列出算式,計算即可得到結果.

解:(115÷30%50(名),

答:本次調(diào)查共抽取了50名學生;

2501520510(名),

補全條形統(tǒng)計圖如圖所示:

3800×320(名),

答:估計該中學最喜歡剪紙小組的學生有320名.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A,B兩點,若點P是第一象限內(nèi)反比例函數(shù)圖象上一點,且的面積是的面積的2倍,則點P橫坐標________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點E、F、G、H分別是邊AB、BC、CDDA的中點,連接EF、FGGHHE.若EH=2EF,則下列結論正確的是

A. ABEF B. AB=2EF C. ABEF D. ABEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年植樹節(jié)期間,某景觀園林公司購進一批成捆的,兩種樹苗,每捆種樹苗比每捆種樹苗多10棵,每捆種樹苗和每捆種樹苗的價格分別是630元和600元,而每棵種樹苗和每棵種樹苗的價格分別是這一批樹苗平均每棵價格的0.9倍和1.2倍.

1)求這一批樹苗平均每棵的價格是多少元?

2)如果購進的這批樹苗共5500棵,種樹苗至多購進3500棵,為了使購進的這批樹苗的費用最低,應購進種樹苗和種樹苗各多少棵?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點B的坐標為(04),已知點Em0)是線段DO上的動點,過點EPE⊥x軸交拋物線于點P,交BC于點G,交BD于點H

1)求該拋物線的解析式;

2)當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

3)在(2)的條件下,是否存在這樣的點P,使得以P、BG為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古希臘數(shù)學家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,若D,E是邊的兩個“黃金分割”點,則的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過,,三點.

1)求該拋物線的解析式;

2)經(jīng)過點B的直線交y軸于點D,交線段于點E,若

①求直線的解析式;

②已知點Q在該拋物線的對稱軸l上,且縱坐標為1,點P是該拋物線上位于第一象限的動點,且在l右側(cè).點R是直線上的動點,若是以點Q為直角頂點的等腰直角三角形,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小麗為更好的掌握一元二次方程根的判斷情況,兩人玩一個游戲:

在一個不透明口袋中裝有分別標有 -10,1,2的四個小球,除了數(shù)字不同之外,這些小球完全一樣.

1)從中任取1球,此小球是非負數(shù)的概率是__________

2)小明從四球中任取兩球,數(shù)字和記為m,若一元二次方程有實根,小明贏,無實根小麗贏.這個游戲公平嗎?請你用樹狀圖或列舉法分別求出小明、小麗贏的概率,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點.若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費用的租車方案,并求出最低費用.

查看答案和解析>>

同步練習冊答案