【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點C作CE⊥AD于點E.
(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;
(2)如圖2,過點C作CF⊥CE,且CF=CE,連接FE并延長交AB于點M,連接BF,求證:AM=BM.
【答案】(1) 2﹣ ;(2)見解析
【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根據(jù)直角三角形30°角的性質(zhì)可得AC=2CE=2,再得∠ECD=90°-60°=30°,設(shè)ED=x,則CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的長;
(2)如圖2,連接CM,先證明△ACE≌△BCF,則∠BFC=∠AEC=90°,證明C、M、B、F四點共圓,則∠BCM=∠MFB=45°,由等腰三角形三線合一的性質(zhì)可得AM=BM.
詳解:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵∠BAD=15°,
∴∠CAE=45°﹣15°=30°,
Rt△ACE中,CE=1,
∴AC=2CE=2,
Rt△CED中,∠ECD=90°﹣60°=30°,
∴CD=2ED,
設(shè)ED=x,則CD=2x,
∴CE=x,
∴x=1,
x=,
∴CD=2x=,
∴BD=BC﹣CD=AC﹣CD=2﹣;
(2)如圖2,連接CM,
∵∠ACB=∠ECF=90°,
∴∠ACE=∠BCF,
∵AC=BC,CE=CF,
∴△ACE≌△BCF,
∴∠BFC=∠AEC=90°,
∵∠CFE=45°,
∴∠MFB=45°,
∵∠CFM=∠CBA=45°,
∴C、M、B、F四點共圓,
∴∠BCM=∠MFB=45°,
∴∠ACM=∠BCM=45°,
∵AC=BC,
∴AM=BM.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB⊥AC,點E是BC的中點,AE與BD交于點F,且F是AE的中點.
(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).
(1)求該拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①ABCD的對角線AC和BD相交于點O,EF過點O且與邊AB,CD分別相交于點E和點F.
(1)求證:OE=OF
(2)如圖②,已知AD=1,BD=2,AC=2,∠DOF=∠α,
①當(dāng)∠α為多少度時,EF⊥AC?
②連結(jié)AF,求△ADF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象相交于A,B兩點,與x軸,y軸分別交于C,D兩點,tan∠DCO=,過點A作AE⊥x軸于點E,若點C是OE的中點,且點A的橫坐標(biāo)為﹣4.,
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接ED,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點,分別過B、C做射線AD的垂線,垂足分別為E、F,連接BF、CE.
(1)求證:四邊形BECF是平行四邊形;
(2)我們知道S△ABD=S△ACD,若AF=FD,在不添加輔助線的條件下,直接寫出與△ABD、△ACD面積相等的所有三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家趙爽“的勾股圓方圖”是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么 的值為( ).
A. 49 B. 25 C. 13 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形ABOC是正方形,點A的坐標(biāo)為(1,1),是以點B為圓心,BA為半徑的圓。是以點O為圓心,OA1為半徑的圓弧;是以點C為圓心,CA2為半徑的圓;是以點A為圓心,AA3為半徑的圓弧,它們所對的圓心角都等于90°。繼續(xù)以點B、O、C、A為圓心按上述做法得到的曲線AA1A2A3A4A5……稱為“正方形的漸開線”,那么點A5的坐標(biāo)是________,點A2018的坐標(biāo)是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點和點,直線過點且與軸交于點,將直線向下平移4個單位得到直線,已知直線剛好過點,且與軸相交于點.
(1)求直線的解析式;
(2)求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com