在△ABC中,AB=CB,∠ABC=90º,FAB延長線上一點(diǎn),點(diǎn)EBC上,且AE=CF.

 (1)求證:RtABERtCBF;

(2)若∠CAE=30º,求∠ACF度數(shù).

 

【答案】

(1)見解析(2) 60°

【解析】(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.

RtABERtCBF中,

AE=CF, AB=BC,  ∴RtABERtCBF(HL)

(2)∵AB=BC, ∠ABC=90°,  ∴  ∠CAB=∠ACB=45°.

∵∠BAE=∠CAB-∠CAE=45°-30°=15°.

由(1)知  RtABERtCBF,  ∴∠BCF=∠BAE=15°,

∴∠ACF=∠BCF+∠ACB=45°+15°=60°.

(1)根據(jù)已知利用HL即可判定RtABERtCBF,

(2) 根據(jù)已知得∠ACB=45°,∠BAE=15°,通過RtABERtCBF,知∠BCF=∠BAE,即可求得∠ACF度數(shù)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中AB=BC,∠ABC=20°,在AB邊上取一點(diǎn)M,使BM=AC.求∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,則∠1=
 
度,圖中有
 
個(gè)等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中AB=AC=6cm,BC=8cm.點(diǎn)E是線段BC邊上的一動(dòng)點(diǎn)(不含B、C兩端點(diǎn)),連結(jié)AE,作∠AED=∠B,交線段AB于點(diǎn)D.
(1)求證:△BDE∽△CEA;
(2)設(shè)BE=x,AD=y,請(qǐng)寫y與x之間的函數(shù)關(guān)系式,并求y的最小值.
(3)E點(diǎn)在運(yùn)動(dòng)的過程中,△ADE能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在△ABC中AB=AC,在△BCE中BA平分∠CBE,且BC=2BE.求證:BE⊥AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在△ABC中AB=AC,以AB為直徑的圓交BC于點(diǎn)D,交AC于點(diǎn)E,
求證:
BD
=
DE

查看答案和解析>>

同步練習(xí)冊(cè)答案