一次函數(shù)y=ax+b的圖象分別與x軸、y軸交于點(diǎn)M,N,與反比例函數(shù)y=的圖象相交于點(diǎn)A,B.過點(diǎn)A分別作AC⊥x軸,AE⊥y軸,垂足分別為C,E;過點(diǎn)B分別作BF⊥x軸,BD⊥y軸,垂足分別為F,D,AC與BD交于點(diǎn)K,連接CD.
(1)若點(diǎn)A,B在反比例函數(shù)y=的圖象的同一分支上,如圖1,試證明:
①S四邊形AEDK=S四邊形CFBK;②AN=BM.
(2)若點(diǎn)A,B分別在反比例函數(shù)y=的圖象的不同分支上,如圖2,則AN與BM還相等嗎?試證明你的結(jié)論.

【答案】分析:點(diǎn)A,B在反比例函數(shù)y=的圖象上,所以矩形AEOC、矩形BDOF面積相等,由圖看出矩形OCKD是它們的公共部分,由此可知S四邊形AEDK=S四邊形CFBK,根據(jù)面積為長×寬,易得AK•DK=BK•CK可知AB∥CD,從而四邊形ACDN、BDCM為平行四邊形,所以AN=CD=BM.
解答:(1)證明:①∵AC⊥x軸,AE⊥y軸,
∴四邊形AEOC為矩形.
∵BF⊥x軸,BD⊥y軸,
∴四邊形BDOF為矩形.
∵AC⊥x軸,BD⊥y軸,
∴四邊形AEDK,DOCK,CFBK均為矩形.(1分)
∵OC=x1,AC=y1,x1•y1=k,
∴S矩形AEOC=OC•AC=x1•y1=k
∵OF=x2,F(xiàn)B=y2,x2•y2=k,
∴S矩形BDOF=OF•FB=x2•y2=k.
∴S矩形AEOC=S矩形BDOF
∵S矩形AEDK=S矩形AEOC-S矩形DOCK,S矩形CFBK=S矩形BDOF-S矩形DOCK,
∴S矩形AEDK=S矩形CFBK.(2分)
②由(1)知:S矩形AEDK=S矩形CFBK
∴AK•DK=BK•CK.
.(4分)
∵∠AKB=∠CKD=90°,
∴△AKB∽△CKD.(5分)
∴∠CDK=∠ABK.
∴AB∥CD.(6分)
∵AC∥y軸,
∴四邊形ACDN是平行四邊形.
∴AN=CD.(7分)
同理BM=CD.
∴AN=BM.(8分)

(2)解:AN與BM仍然相等.(9分)
∵S矩形AEDK=S矩形AEOC+S矩形ODKC,S矩形BKCF=S矩形BDOF+S矩形ODKC,
又∵S矩形AEOC=S矩形BDOF=k,
∴S矩形AEDK=S矩形BKCF.(10分)
∴AK•DK=BK•CK.

∵∠K=∠K,
∴△CDK∽△ABK.
∴∠CDK=∠ABK.
∴AB∥CD.(11分)
∵AC∥y軸,
∴四邊形ANDC是平行四邊形.
∴AN=CD.
同理BM=CD.
∴AN=BM.(12分)
點(diǎn)評:此題綜合考查了反比例函數(shù)的性質(zhì),平行四邊形等多個知識點(diǎn).此題難度稍大,綜合性比較強(qiáng),注意對各個知識點(diǎn)的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b(a≠0)的圖象l與y=-x+3的圖象關(guān)于y軸對稱,直線l又與反比例函數(shù)y=
kx
交于點(diǎn)A(1,m),求m及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,一次函數(shù)y=ax+b圖象經(jīng)過點(diǎn)(1,2)、點(diǎn)(-1,6).求:
(1)這個一次函數(shù)的解析式;
(2)一次函數(shù)圖象與兩坐標(biāo)軸圍成的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則在同一坐標(biāo)系中,一次函數(shù)y=ax+c和反比例函數(shù)y=
a
x
的圖象大致是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=
k
x
的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=
10
,tan∠AOC=
1
3
,點(diǎn)B的坐標(biāo)為(m,-2).
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請你求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興三模)在函數(shù)中,我們把關(guān)于x的一次函數(shù)y=ax+b與y=bx+a稱為一對交換函數(shù),如y=3x+1與與y=x+3是一對交換函數(shù).稱函數(shù)y=3x+1與是函數(shù)y=x+3的交換函數(shù).
(1)求函數(shù)y=-
2
3
x+4與交換函數(shù)的圖象的交點(diǎn)坐標(biāo);
(2)若函數(shù)y=-
2
3
x+b(b為常數(shù))與交換函數(shù)的圖象及縱軸所圍三角形的面積為4,求b的值.

查看答案和解析>>

同步練習(xí)冊答案