【題目】如圖所示是一個紙杯,它的母線延長后形成的立體圖形是圓錐,該圓錐的側(cè)面展開圖是扇形OAB,經(jīng)測量,紙杯開口圓的直徑為6cm,下底面直徑為4,母線長EF=9cm,求扇形OAB的圓心角及這個紙杯的表面積.(結(jié)果保留根號和π)
【答案】40度 49π
【解析】
(1)設(shè)∠AOB=n°,AO=R,則CO=R-9,利用圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長作為相等關(guān)系列方程,并聯(lián)立成方程組求解即可;
(2)求紙杯的側(cè)面積即為扇環(huán)的面積,需要用大扇形的面積減去小扇形的面積.紙杯表面積=S紙杯側(cè)面積+S紙杯底面積.
解:由題意可知:=6πcm, =4π,設(shè)∠AOB=n,AO=R,則CO=R﹣9, 由弧長公式得:l=,
∴,
解得:n=40,R=27,
故扇形OAB的圓心角是40度.
∵R=27,R﹣9=18,
∴S扇形OCD= ×4π×18=36π(cm2),
S扇形OAB= ×6π×27=81π(cm2),
紙杯側(cè)面積=S扇形OAB﹣S扇形OCD=81π﹣36π=45π(cm2),
紙杯底面積=π22=4π(cm2)
紙杯表面積=45π+4π=49π(cm2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市政規(guī)劃出一塊矩形土地用于某項目開發(fā),其中,設(shè)計分區(qū)如圖所示,為矩形內(nèi)一點,作于點交于點,過點作交于點,其中丙區(qū)域用于主建筑區(qū),其余各區(qū)域均用于不同種類綠化.
若點是的中點,求的長;
要求綠化占地面積不小于,規(guī)定乙區(qū)域面積為
①若將甲區(qū)域設(shè)計成正方形形狀,能否達到設(shè)計綠化要求?請說明理由;
②若主建筑丙區(qū)域不低于乙區(qū)域面積的,則的最大值為 (請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別表示兩名同學(xué)沿著同一路線運動的一次函數(shù)圖象,圖中和分別表示運動路程和時間,已知甲的速度比乙快.有下列結(jié)論:
①射線表示甲的運動路程與時間的函數(shù)關(guān)系
②甲出發(fā)時,乙已經(jīng)在甲前面12米;
③8秒后,甲超過了乙;
④64秒時,甲追上了乙
其中,正確結(jié)論的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O 的直徑 AB 長為 10,弦 MN⊥AB,將⊙O 沿 MN 翻折,翻折后點 B 的對應(yīng)點為點 B′,若 AB′=2,MB′的長為( )
A. 2 B. 2或 2 C. 2 D. 2 或 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時間t1(單位s)滿足二次函數(shù)關(guān)系,并測得相關(guān)數(shù)據(jù):
滑行時間t1/s | 0 | 1 | 2 | 3 | 4 |
滑行距離y1/s | 0 | 4.5 | 14 | 28.5 | 48 |
滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.
(1)求y1和t1滿足的二次函數(shù)解析式;
(2)求滑坡AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,的三個頂點在坐標軸上,,且,將沿著翻折到.
(1)求點的坐標;
(2)動點從點出發(fā),沿軸以個單位秒的速度向終點運動,過點作直線垂直于軸,分別交直線、直線于點、,設(shè)線段的長為,點運動時間為秒,求與的關(guān)系式,并寫出的取值范圍.
(3如圖2在(2)的條件下,點為點關(guān)于軸的對稱點,點在直線上,是否存在點,使得以、、、為頂點的四邊形為平行四邊形;若存在,求出值和點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地質(zhì)公園中有兩座相鄰小山.游客需從左側(cè)小山山腳E處乘坐豎直觀光電梯上行100米到達山頂C處,然后既可以沿水平觀光橋步行到景點P處,也可以通過滑行索道到達景點Q處,在山頂C處觀測坡底A的俯角為75°,觀測Q處的俯角為30°,已知右側(cè)小山的坡角為30°(圖中的點C,E,A,B,P,Q均在同一平面內(nèi),點A,Q,P在同一直線上)
(1)求∠CAP的度數(shù)及CP的長度;
(2)求P,Q兩點之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接:“國家衛(wèi)生城市”復(fù)檢,某市環(huán)衛(wèi)局準備購買A,B兩種型號的垃圾箱,通過市場調(diào)研得知:購買3個A型垃圾箱和2個B型垃圾箱共需540元,購買2個A型垃圾箱比購買3個B型垃圾箱少用160元.
(1)求每個A型垃圾箱和B型垃圾箱各多少元?
(2)該市現(xiàn)需要購買A,B兩種型號的垃圾箱共30個,其中買A型垃圾箱不超過16個.
①求購買垃圾箱的總花費w(元)與A型垃圾箱x(個)之間的函數(shù)關(guān)系式;
②當買A型垃圾箱多少個時總費用最少,最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學(xué)校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com