如圖,已知C是線段AB上的任意一點(端點除外),分別以AC、BC為斜邊并且在AB的同一側(cè)作等腰直角△ACD和△BCE,連接AE交CD于M,連接BD交CE于N.給出以下四個結(jié)論:①MN∥AB;②數(shù)學(xué)公式;③數(shù)學(xué)公式.④AB=2MN;其中正確的結(jié)論有________(填寫序號即可)

①②③
分析:(1)用平行線分線段成比例定理;
(2)根據(jù)相似三角形的性質(zhì),化簡分式可得;
(3)要利用二次函數(shù)最值即可求解.
(4)根據(jù)③直接得出MN≠AB.
解答:(1)∵CD∥BE,
∴△CND∽△ENB,

∵CE∥AD,
∴△AMD∽△EMC,

∵等腰直角△ACD和△BCE,
∴CD=AD,BE=CE,
,
∴MN∥AB;
(2)∵CD∥BE,
∴△CND∽△ENB,

設(shè) =k,
則CN=kNE,DN=kNB,
∵M(jìn)N∥AB,
∴△EMN∽△EAC,
==,
==,
+=1,
=+
(3)∵=+,
∴MN==,
設(shè)AB=a(常數(shù)),AC=x,
則MN=x(a-x)=-(x-a)2+a≤a;
(4)由③得出MN≠AB,故④錯誤.
故答案為:①②③.
點評:此題考查了三角形相似的判定與性質(zhì)、平行線分線段成比例定理、比例變形及二次函數(shù)的應(yīng)用,綜合性比較強.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知B是線段AE上一點,ABCD和BEFG都是正方形,連接AG、CE.
(1)求證:AG=CE;
(2)設(shè)CE與GF的交點為P,求證:
PG
CG
=
PE
AG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知CD是線段AB的垂直平分線,垂足為D,E是CD上一點.若∠A=60°,則下列結(jié)論中錯誤的是( 。
A、AE=BEB、AD=BDC、AB=ACD、ED=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知C是線段AB的中點,則CD等于( 。
精英家教網(wǎng)
A、AD-BD
B、
1
2
(AD-BD)
C、
1
2
AB-BD
D、AD-
1
2
AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•宿遷)如圖,已知P是線段AB的黃金分割點,且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長是AB,寬是PB的矩形的面積,則S1
=
=
S2.(填“>”“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖①,已知C是線段AB上一點,分別以AC、BC為邊長在AB的同側(cè)作等邊△ADC與等邊△CBE,試猜想AE與DB的大小關(guān)系,并證明.
(2)如圖②,當(dāng)?shù)冗叀鰿BE繞點C旋轉(zhuǎn)后,上述結(jié)論是否仍成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案