【題目】某政府部門進(jìn)行公務(wù)員招聘考試,其中三人中錄取一人,他們的成績?nèi)缦拢?/span>

測試成績

題目

文化課知識

74

87

69

面試

58

74

70

平時表現(xiàn)

87

43

65

1)按照平均成績甲、乙、丙誰應(yīng)被錄取?

2)若按照文化課知識、面試、平時表現(xiàn)的成績已431的比例錄取,甲、乙、丙誰應(yīng)被錄取?

【答案】1)甲的平均數(shù)=73,乙的平均數(shù)=68 丙的平均數(shù)=68∴甲被錄;

2)甲的成績=69.625,乙的成績=76.625,丙的成績=68.875,∴乙被錄取.

【解析】

1)根據(jù)算術(shù)平均數(shù)的計算方法分別求出三人的平均分,然后作出判斷即可;

2)根據(jù)加權(quán)平均數(shù)的計算方法分別求出三人的平均分,然后作出判斷即可.

解:(1)甲:,

乙:,

丙:,

73分最高,

∴應(yīng)該錄取甲;

2)甲:,

乙:,

丙:,

分最高,

∴應(yīng)該錄取乙.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)民收了400多個橙子(不到500個),把這些橙子20個裝一盒或者12個裝一盒,都是多5個,這個農(nóng)民一共收了______個橙子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點,若.

(1)求反比例函數(shù)的解析式:

(2)若點軸上一動點,當(dāng)是等腰三角形時,直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,過它的三個頂點分別作對邊的平行線,則圖中共有______個等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《代數(shù)學(xué)》中記載,形如x2+8x33的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為2x的矩形,得到大正方形的面積為33+1649,則該方程的正數(shù)解為743.”小聰按此方法解關(guān)于x的方程x2+10x+m0時,構(gòu)造出如圖2所示的圖形,已知陰影部分的面積為50,則該方程的正數(shù)解為( 。

A.6B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,足球場上守門員在O處開出一高球,球從離地面1mA處飛出(Ay軸上),運動員乙在距O6mB處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點M,距地面約4m高.球第一次落地后又彈起.據(jù)試驗,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.

(1)求足球開始飛出到第一次落地時,該拋物線的表達(dá)式;

(2)運動員乙要搶到第二個落點D,他應(yīng)再向前跑多少米?( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的,兩點,與軸交于點

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出當(dāng)時,的取值范圍;

3)在軸上找一點使最大,求的最大值及點的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)活動中心為中老年舞蹈隊統(tǒng)一隊服和道具,準(zhǔn)備購買 10 套某種品牌的舞蹈鞋,每雙舞蹈鞋配 xx≥2)個舞蹈扇,供舞蹈隊隊員使用.該社區(qū)附近 A,B 兩家超市都有這種品牌的舞蹈鞋和舞蹈扇出售,且每雙舞蹈鞋的標(biāo)價均為 30 元,每個舞蹈扇的標(biāo)價為 3 元,目前兩家超市同時在做促銷活動:

A 超市:所有商品均打九折(按標(biāo)價的 90%)銷售;

B 超市:買一雙舞蹈鞋送 2 個舞蹈扇.

設(shè)在 A 超市購買舞蹈鞋和舞蹈扇的費用為(元),在 B 超市購買舞蹈鞋和舞蹈扇的費用為 (元).請解答下列問題:

1)分別寫出 , x 之間的關(guān)系式;

2)若該活動中心只在一家超市購買,你認(rèn)為在哪家超市購買更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)了二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如32 (1)2.善于思考的小明進(jìn)行了以下探索:

設(shè)ab(mn)2(其中a,b,m,n均為正整數(shù)),則有abm22n22mn.

am22n2,b2mn.這樣小明就找到了一種把部分形如ab的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當(dāng)a,bm,n均為正整數(shù)時,若ab(mn)2,用含m,n的式子分別表示ab,得a__________,b__________;

(2)利用所探索的結(jié)論,找一組正整數(shù)a,b,mn填空:________________(________________)2;

(3)a4(mn)2,且a,mn均為正整數(shù),求a的值.

查看答案和解析>>

同步練習(xí)冊答案