【題目】如果∠α和∠β互補,且∠α<∠β,下列表達式:①90°﹣∠α;②∠β﹣90°;③(∠β+∠α);④(∠β﹣∠α)中,等于∠α的余角的式子有( 。
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料: 如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據(jù)學習以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(1)、(2)、(3)補充完整:
將不等式按條件進行轉化:
當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1> ;
當x<0時,原不等式可以轉化為x2+4x﹣1< ;
(1)構造函數(shù),畫出圖象 設y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個函數(shù)圖象公共點的橫坐標 觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為;
(3)借助圖象,寫出解集 結合討論結果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了豐富學生課余活動開展了一次“校園歌手大獎賽”的歌詠比賽,共有18名同學入圍,他們的決賽成績如下表:
成績(分) | 9.40 | 9.50 | 9.60 | 9.70 | 9.80 | 9.90 |
人數(shù) | 2 | 3 | 5 | 4 | 3 | 1 |
則入圍同學決賽成績的中位數(shù)和眾數(shù)分別是( )
A.9.70,9.60
B.9.60,9.60
C.9.60,9.70
D.9.65,9.60
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當﹣1<x<1時,化簡 [x]+(x)+[x)的結果是__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O,D,E三點在同一直線上,∠AOB=90°.
(1)圖中∠AOD的補角是_____,∠AOC的余角是_____;
(2)如果OB平分∠COE,∠AOC=35°,請計算出∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BAP與∠APD互補,∠1=∠2,試說明:∠E=∠F.請在下面的括號中填上理由.
解:∵∠BAP與∠APD互補( ),
∴AB∥CD( ),
∴∠BAP=∠APC( ).
又∵∠1=∠2( ),
∴∠BAP-∠1=∠APC-∠2( ),
即∠3=∠4,
∴AE∥PF( ),
∴∠E=∠F( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,BD,CE分別是邊AC,AB上的中線,BD與CE相交于點O,點M,N分別為線段BO和CO的中點.求證:四邊形EDNM是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com