分析 過點(diǎn)G作GM⊥AD于M,如圖,先證明△ABE∽△DEF,利用相似比計(jì)算出DF=$\frac{1}{2}$,再利用正方形的性質(zhì)判斷△DGM為等腰直角三角形得到DM=MG,設(shè)DM=x,則MG=x,EM=1-x,然后證明△EMG∽△EDF,則利用相似比可計(jì)算出GM,再利用三角形面積公式計(jì)算S△DEG即可.
解答 解:過點(diǎn)G作GM⊥AD于M,如圖,
∵FE⊥BE,
∴∠AEB+∠DEF=90°,
而∠AEB+∠ABE=90°,
∴∠ABE=∠DEF,
而∠A=∠EDF,
∴△ABE∽△DEF,
∴AB:DE=AE:DF,即2:1=1:DF,
∴DF=$\frac{1}{2}$,
∵四邊形ABCD為正方形,
∴∠ADB=45°,
∴△DGM為等腰直角三角形,
∴DM=MG,
設(shè)DM=x,則MG=x,EM=1-x,
∵M(jìn)G∥DF,
∴△EMG∽△EDF,
∴MG:DF=EM:ED,即x:$\frac{1}{2}$=(1-x):1,解得x=$\frac{1}{3}$,
∴S△DEG=$\frac{1}{2}$×1×$\frac{1}{3}$=$\frac{1}{6}$.
故答案為$\frac{1}{6}$.
點(diǎn)評 本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個(gè)角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).熟練運(yùn)用相似比計(jì)算線段的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
所掛物體質(zhì)量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
彈簧長度y/cm | 18 | 20 | 22 | 24 | 26 | 28 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com