【題目】如圖,在平面直角坐標(biāo)系中,已知,,其中,滿足,點(diǎn)為第三象限內(nèi)一點(diǎn).
(1)若到坐標(biāo)軸的距離相等,,且,求點(diǎn)坐標(biāo)
(2)若為,請(qǐng)用含的式子表示的面積.
(3)在(2)條件下,當(dāng)時(shí),在軸上有點(diǎn),使得的面積是的面積的2倍,請(qǐng)求出點(diǎn)的坐標(biāo).
【答案】(1)或;(2);(3)或.
【解析】
(1)利用M在第三象限且到坐標(biāo)軸的距離相等,求出M點(diǎn)坐標(biāo),同時(shí)利用絕對(duì)值與算術(shù)平方根的非負(fù)性求出a、b,得到AB的長(zhǎng)度,再利用,求出N點(diǎn)
(2)利用三角形的面積公式直接寫出即可,注意m的取值范圍
(3)同(2)利用面積公式寫出兩個(gè)三角形的面積,然后列出方程解方程
(1)由題意可知:
,
求得,
∵,
∴,,
∴,,
∴,
∵,,
∴,
∵,
∴或者,
∴或;
(2)由題意可得:
,
∵在三象限,
∴,
∴;
(3)當(dāng)時(shí),,
由題意可得:
,
,
,
,
∴或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)為線段上任意一點(diǎn)(不與點(diǎn)重合),分別以為一腰在的同側(cè)作等腰和,,,,連接交于點(diǎn),連接交于點(diǎn),與交于點(diǎn),連接.
線段與的數(shù)量關(guān)系為 ;請(qǐng)直接寫出 ;
將繞點(diǎn)旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,探究線段與的數(shù)量關(guān)系,并說(shuō)明理由;求出此時(shí)的度數(shù);
在的條件下求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,可推得.理由如下:
(已知),
且(________)
(等量代換)
(________)
________(________)
又(已知)
(等量代換)
(________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E、F分別是AB、DC邊上的點(diǎn),且AE=CF,
(1)求證:≌.
(2)若DEB=90,求證四邊形DEBF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解初三年級(jí)1000名學(xué)生的身體健康情況,從該年級(jí)隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
解答下列問(wèn)題:
(1)這次抽樣調(diào)查的樣本容量是 ,并補(bǔ)全頻數(shù)分布直方圖;
(2)C組學(xué)生的頻率為 ,在扇形統(tǒng)計(jì)圖中D組的圓心角是 度;
(3)請(qǐng)你估計(jì)該校初三年級(jí)體重超過(guò)60kg的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若是由ABC平移后得到的,且中任意一點(diǎn)經(jīng)過(guò)平移后的對(duì)應(yīng)點(diǎn)為
(1)求點(diǎn)小的坐標(biāo)。
(2)求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)政府“綠色出行”的號(hào)召,李華選擇騎自行車到郊外游玩,她離家的距離與時(shí)間的關(guān)系如圖所示,請(qǐng)根據(jù)圖像回答下列問(wèn)題.
(1)李華到達(dá)離家最遠(yuǎn)的地方是幾時(shí)?此時(shí)離家多遠(yuǎn)?
(2)李華返回時(shí)的速度是多少?
(3)李華全程騎車的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來(lái);
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤(rùn)為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說(shuō)明那種方案獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com