【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,其他三邊用總長為60米柵欄圍。ㄈ鐖D),若設(shè)綠化帶的BC邊為x米,綠化帶的面積為y平方米。

1)求y 關(guān)于x 的函數(shù)關(guān)系式,并寫出自變量x 的取值范圍:

2)是否存在綠化帶BC的長的某個值,使得綠化帶的面積為450平方米?若存在,請求出這個值;若不存在,請說明理由。

【答案】(1);(2)不存在綠化帶BC的長的某個值,使得綠化帶的面積為450平方米

【解析】

1)根據(jù)題意,可用x表示矩形的寬AB,然后用長×寬即可表示面積, BC不能大于墻的長度,可知x的取值范圍;(2)令面積y=450,建立方程,若方程有解且滿足題意,則存在,反之則不存在。

1)由題意得:

2)解:由題意得:

整理得:x2-60x+900=0,

(x-30)2=0,

解得x=30.

30>25,

∴不存在綠化帶BC的長的某個值,使得綠化帶的面積為450平方米;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,點.已知拋物線是常數(shù)),頂點為.

(Ⅰ)當(dāng)拋物線經(jīng)過點時,求頂點的坐標(biāo);

(Ⅱ)若點軸下方,當(dāng)時,求拋物線的解析式;

(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點.當(dāng)時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12厘米,OB=6厘米.點P從點O開始沿OA邊向點A1厘米/秒的速度移動;點Q從點B開始沿BO邊向點O1厘米/秒的速度移動.如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6),那么,當(dāng)t為何值時,POQAOB相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價為2000元的冰箱以2400元售出,平均毎天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)査表明:這種冰箱的售價毎降低50元,平均每天就能多售出4.

1)假設(shè)每臺冰箱降價元,商場每天銷售這種冰箱的利潤為元,請寫出間的函數(shù)表達(dá)式;(不要求寫出自變量的取值范圍)

2)商場要想在這種冰箱銷售中毎天盈利4800元,同時又要使百姓得到實惠,毎臺冰箱應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD和正方形DEFG中,點GCD上,DE=2,將正方形DEFG繞點D順時針旋轉(zhuǎn)60°,得到正方形DEFG′,此時點G′在AC上,連接CE′,則CE′+CG′=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的方程y= (x+2)(xm) (m>0)x軸交于B、C,與y軸交于點E,且點B在點C的左側(cè),拋物線還經(jīng)過點P(2,2)

1)求該拋物線的解析式

2)在(1)的條件下,求BCE的面積

3)在(1)的條件下,在拋物線的對稱軸上找一點H,使EH+BH的值最小。求出點H的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃,設(shè)花圃的一邊ABxm,面積為ym2

1)求yx的函數(shù)關(guān)系式;

2)如果要圍成面積為48m2的花圃,AB的長是多少?

3)能圍成比48m2更大的花圃嗎?如果能,請求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形的邊長為,點為平面內(nèi)一動點,且,將點繞點按逆時針方向轉(zhuǎn)轉(zhuǎn),得到點,連接,則的最大值__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點G是△ABC的重心,CG2sinACG,則BC長為_____

查看答案和解析>>

同步練習(xí)冊答案