計(jì)算:|-1|-(π-3)0+2-1
考點(diǎn):實(shí)數(shù)的運(yùn)算,零指數(shù)冪,負(fù)整數(shù)指數(shù)冪
專(zhuān)題:計(jì)算題
分析:原式第一項(xiàng)利用絕對(duì)值的代數(shù)意義化簡(jiǎn),第二項(xiàng)利用零指數(shù)冪法則計(jì)算,最后一項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算即可得到結(jié)果.
解答:解:原式=1-1+
1
2
=
1
2
點(diǎn)評(píng):此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線AB、CD、EF相交于點(diǎn)O,且AB⊥CD,若∠BOE=31°,則∠FOD的度數(shù)為( 。
A、31°B、149°
C、59°D、無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x+y=4,xy=3,求下列各式的值:
(1)(x-y)2;
(2)x2y+xy2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

利群商場(chǎng)銷(xiāo)售某種洗衣機(jī),每臺(tái)進(jìn)價(jià)為2500元,市場(chǎng)調(diào)研表明,當(dāng)售價(jià)為2900元時(shí),平均每天能售出16臺(tái),而當(dāng)售價(jià)每降低50元時(shí),平均每天就能多售出8臺(tái),商場(chǎng)要想使這種洗衣機(jī)的銷(xiāo)售利潤(rùn)平均每天達(dá)到10000元,每臺(tái)洗衣機(jī)的定價(jià)應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程組
2x+3y=6
3x-2y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點(diǎn),點(diǎn)P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒.
(1)若a=2,那么t為何值時(shí)△BPQ與△BDA相似?
(2)已知M為AC上一點(diǎn),若當(dāng)t=
3
2
時(shí),四邊形PQCM是平行四邊形,求這時(shí)點(diǎn)P的運(yùn)動(dòng)速度.
(3)在P、Q兩點(diǎn)運(yùn)動(dòng)工程中,要使線段PQ在某一時(shí)刻平分△ABD的面積,點(diǎn)P的運(yùn)動(dòng)速度應(yīng)限制在什么范圍內(nèi)?【提示:對(duì)于一元二次方程,有如下的結(jié)論:若x1•x2是方程ax2+bx+c=0(a≠0)的兩個(gè)根,則x1+x2=-
b
a
,x1•x2=
c
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式組
x-a
2
>-1①
b-x
3
>2②
的解集是1<x<7.求a+b的算術(shù)平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正比例函數(shù)y=(m-1)x5-m2的圖象在第二、四象限,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
3
2
÷
1
18
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案