【題目】如圖,矩形中,,,點(diǎn)為對(duì)角線上異于點(diǎn)的一個(gè)動(dòng)點(diǎn),聯(lián)結(jié),沿所在的直線翻折,使得點(diǎn)落在點(diǎn)的位置

1)當(dāng)時(shí),求點(diǎn)到直線的距離。

2)聯(lián)結(jié),求當(dāng)相似時(shí),線段的長(zhǎng)。

3)當(dāng)時(shí),請(qǐng)直接寫(xiě)出此時(shí)的面積。

【答案】1;(2;(3

【解析】

1)根據(jù)直角三角形性質(zhì)求解即可

2)根據(jù)題意,相似分為兩種情況 ,一是△EPF∽△BAD,二是△EFP∽△BAD,在兩種情況下分類討論,分別求出不同情況下的值

(3)如圖一、圖二,首先弄清楚題目所存在的情況可能性,之后按照特殊的四邊形性質(zhì)以及三角形相關(guān)性質(zhì)求解即可

1)過(guò)EEGAB于點(diǎn)G,

RtABD中,AD=, AB=3,

∴∠ABD =30°,

∵∠APD=45°

∴∠BAP=15°,

∴∠BAE = 30°

RtEAG中,EA= EB=3

EG=

(2)①△EPF∽△BAD,

∴∠EPF = 90° ,

∵∠APB=APE,

180°-APD=90 °+APD,

∴∠APD=45°,在APD中,∠ADP=60°,∠APD=45°AD=,DP=

BD=

BP=

②△EFP∽△BAD

AEBD,

∴∠BAF=60°,

∴∠PAD=30°

AP= BP

在等腰APB中,AB=3 APB=30°,

BP=

綜上所述:當(dāng)EPFABD相似時(shí),BP=

(3)

如圖一:∠DPE=30°,

∵∠APB=APE

180°-APD=30°+APD,

∴∠APD=75°

∴∠PAB=45°

APB中,過(guò)PPIAB

AB=3,∠PAB=45°,∠PBA=30°

PI=

∴△APB面積=

如圖二:過(guò)PPHAB于H,易得四邊形PEAB為菱形

APB面積=

綜上所述,APB面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖,在正方形和平行四邊形中,點(diǎn),,在同一條直線上,是線段的中點(diǎn),連接,

探究:當(dāng)的夾角為多少度時(shí),平行四邊形是正方形?

小聰同學(xué)的思路是:首先可以說(shuō)明四邊形是矩形;然后延長(zhǎng)于點(diǎn),構(gòu)造全等三角形,經(jīng)過(guò)推理可以探索出問(wèn)題的答案.

請(qǐng)你參考小聰同學(xué)的思路,探究并解決這個(gè)問(wèn)題.

(1)求證:四邊形是矩形;

(2)的夾角為________度時(shí),四邊形是正方形.

理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,,點(diǎn)的中點(diǎn).如果點(diǎn)在線段上以的速度由點(diǎn)點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)點(diǎn)運(yùn)動(dòng).

1)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,是否全等,請(qǐng)說(shuō)明理由.

2)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OBCD的邊OBx軸正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)該平行四邊形對(duì)角線的交點(diǎn)A,且與邊BC交于點(diǎn)F.若點(diǎn)D的坐標(biāo)為(68)OD=DC,則點(diǎn)F的坐標(biāo)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某位籃球運(yùn)動(dòng)員在同樣的條件下進(jìn)行投籃練習(xí),結(jié)果如下表:

投籃次數(shù)

進(jìn)球次數(shù)

進(jìn)球頻率

________

________

________

________

________

________

________

將上表補(bǔ)充完整;

這位運(yùn)動(dòng)員投籃一次,進(jìn)球的概率約是多少?

若這位運(yùn)動(dòng)員投籃次,必定會(huì)投進(jìn)次嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)為常數(shù)),下列說(shuō)法正確的是( ).

A. 對(duì)任意實(shí)數(shù),函數(shù)與軸都沒(méi)有交點(diǎn)

B. 存在實(shí)數(shù),滿足當(dāng)時(shí),函數(shù)的值都隨的增大而減小

C. 取不同的值時(shí),二次函數(shù)的頂點(diǎn)始終在同一條直線上

D. 對(duì)任意實(shí)數(shù),拋物線都必定經(jīng)過(guò)唯一定點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y1kx+b的圖象經(jīng)過(guò)點(diǎn)(0,﹣2),(31).

1)求一次函數(shù)的表達(dá)式,并在所給直角坐標(biāo)系中畫(huà)出此函數(shù)的圖象;

2)根據(jù)圖象回答:當(dāng)x  時(shí),y10

3)求直線y1kx+b、直線y2=﹣2x+4y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是元.根據(jù)市場(chǎng)調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是元時(shí),銷售量是件.而銷售單價(jià)每降低元,就可多售出件.

求出銷售該品牌童裝獲得的利潤(rùn)元與銷售單價(jià)元之間的函數(shù)關(guān)系式;

若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于元,且商場(chǎng)要完成不少于件的銷售

任務(wù),則商場(chǎng)銷售該品牌童裝獲得的最大利潤(rùn)是多少元?

如果要使利潤(rùn)不低于元,那么銷售單價(jià)應(yīng)在什么取值范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兒童節(jié)那天,小強(qiáng)去商店買東西,看見(jiàn)每盒餅干的標(biāo)價(jià)是整數(shù),于是小強(qiáng)拿出10元錢遞給商店的阿姨,下面是他倆的對(duì)話:小強(qiáng):阿姨,我有10元錢,我想買一盒餅干和一袋牛奶.

如果每盒餅干和每袋牛奶的標(biāo)價(jià)分別設(shè)為x元,y元,請(qǐng)你根據(jù)以上信息:

(1)找出xy之間的函數(shù)關(guān)系式;

(2)請(qǐng)利用不等關(guān)系,求出每盒餅干和每袋牛奶的標(biāo)價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案