如圖1,在等邊△ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)C不重合),連結(jié)BP.
△ABP繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連結(jié)AA1,射線AA1分別交射線PB、射線B1B于點(diǎn)E、F.
(1) 如圖1,當(dāng)0°<α<60°時(shí),在α角變化過程中,△BEF與△AEP始終存在 ▲ 關(guān)系(填“相似”或“全等”),并說明理由;
(2)如圖2,設(shè)∠ABP=β . 當(dāng)60°<α<180°時(shí),在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請(qǐng)說明理由;
(3)如圖3,當(dāng)α=60°時(shí),點(diǎn)E、F與點(diǎn)B重合. 已知AB=4,設(shè)DP=x,△A1BB1的面積為S,求S關(guān)于x的函數(shù)關(guān)系式.
解: (1) 相似
由題意得:∠APA1=∠BPB1=α AP= A1P BP=B1P
則 ∠PAA1 =∠PBB1 =
∵∠PBB1 =∠EBF ∴∠PAE=∠EBF
又∵∠BEF=∠AEP
∴△BEF ∽△AEP
(2)存在,理由如下:
易得:△BEF ∽△AEP
若要使得△BEF≌△AEP,只需要滿足BE=AE即可
∴∠BAE=∠ABE
∵∠BAC=60° ∴∠BAE=
∵∠ABE=β ∠BAE=∠ABE
∴ 即α=2β+60°
(3)連結(jié)BD,交A1B1于點(diǎn)G,
過點(diǎn)A1作A1H⊥AC于點(diǎn)H.
∵∠B1 A1P=∠A1PA=60° ∴A1B1∥AC
由題意得:AP= A1 P ∠A=60°
∴△PAA1是等邊三角形
∴A1H=
在Rt△ABD中,BD=
∴BG=
∴ (0≤x<2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
5
| ||
2 |
5
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
3 |
7 |
5 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com