如圖所示,直線AB與射線CD平行,點E是AB上的一點,點G是CD上的一點,∠BEF=35°,F(xiàn)C平分∠EFG,若∠C=20°,求∠FGD的度數(shù).
分析:過點F作FH∥AB,根據(jù)兩直線平行,內(nèi)錯角相等可得∠EFH=∠BEF,∠CFH=∠C,然后求出∠CFE,再根據(jù)角平分線的定義可得∠CFG=∠CFE,再求出∠GFH,然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠FGD=∠GFH.
解答:解:如圖,過點F作FH∥AB,
∵AB∥CD,
∴AB∥FH∥CD,
∴∠EFH=∠BEF=35°,∠CFH=∠C=20°,
∴∠CFE=∠EFH+∠CFH=35°+20°=55°,
∵FC平分∠EFG,
∴∠CFG=∠CFE=55°,
∴∠GFH=∠CFG+∠CFH=55°+20°=75°,
∵FH∥CD,
∴∠FGD=∠GFH=75°.
點評:本題考查了平行線的性質(zhì),角平分線的定義,此類題目,過拐點作平行線是解題的關(guān)鍵,也是本題的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,直線AB與兩坐標(biāo)軸的交點坐標(biāo)分別是A(6,0),B(0,8),O是坐標(biāo)系原點.
(1)求直線AB所對應(yīng)的函數(shù)的表達式;
(2)用尺規(guī)作圖,作以O(shè)為圓心且與直線AB相切的⊙O;并求出⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,直線AB與反比例函數(shù)y=
kx
的圖象相交于A,B兩點,已知A(1,4).
(1)求反比例函數(shù)的解析式;
(2)直線AB交x軸于點C,連接OA,當(dāng)△AOC的面積為6時,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線AB與直線CD相交于點O,EO⊥AB,∠EOD=25°,則∠BOD=
65°
65°
,∠AOC=
65°
65°
,∠BOC=
115°
115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線AB與CD相交于O點,∠1=∠2.若∠AOE=140°,則∠AOC 的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線AB與CD交于點O,∠BOD=31°36′,OE平分∠BOC,則∠AOD+∠COE=
222°36′
222°36′

查看答案和解析>>

同步練習(xí)冊答案