【題目】提出問題:(1)如圖①,正方形ABCD中,點E,點F分別在邊AD和邊CD上,若正方形邊長為4,DE+DF=4,則四邊形BEDF的面積為 .
探究問題:(2)如圖②,四邊形ABCD,AB=BC=4,∠ABC=60°,∠ADC=120°,點E、F分別是邊AD和邊DC上的點,連接BE,BF,若ED+DF=3,BD=2,求四邊形EBFD的面積;
解決問題:(3)某地質(zhì)勘探隊為了進行資源助測,建立了如圖③所示的一個四邊形野外勘查基地,基地相鄰兩側(cè)邊界DA、AB長度均為4km,∠DAB=90°,由于勘測需要及技術(shù)原因,主勘測儀C與基地邊緣D、B夾角為90°(∠DCB=90°),在邊界CD和邊界BC上分別有兩個輔助勘測儀E和F,輔助勘測儀E和F與主勘測儀C的距離之和始終等于4km(CE+CF=4).為了達到更好監(jiān)測效果,需保證勘測區(qū)域(四邊形EAFC)面積盡可能大.請問勘測區(qū)域面積有沒有最大值,如果有求出最大值,如果沒有,請說明理由.
【答案】(1)8;(2);(3)有,四邊形EAFC的面積最大值為8km2
【解析】
提出問題:
(1)由四邊形BEDF的面積=S△DEB+S△DFB,可求解;
探究問題:
(2)如圖②,連接AC,過點B作BM⊥AD,BN⊥CD,通過證明點A,點B,點C,點D四點共圓,可得∠BAC=∠BDC=60°,∠ADB=∠ACB=60°,由直角三角形的性質(zhì)可求BM=BN=MD=,由四邊形BEDF的面積=S△DEB+S△DFB,可求解;
解決問題:
(3)如圖③,連接AC,BD,過點A作AM⊥CD,AN⊥BC,通過證明點A,點B,點C,點D四點共圓,且BD是直徑,可得∠ACM=∠ABD=45°,∠ADB=∠ACB=45°,由直角三角形的性質(zhì)可求AM=CM=AC,AN=CN=AC,由面積關(guān)系可求解.
解:提出問題:
(1)如圖①,連接BD,
∵四邊形BEDF的面積=S△DEB+S△DFB,
∴四邊形BEDF的面積=DE×AB+DF×BC=×4×(DE+DF)=8,
故答案為:8;
探究問題:
(2)如圖②,連接AC,過點B作BM⊥AD,BN⊥CD,
∵AB=BC=4,∠ABC=60°,
∴△ABC是等邊三角形,
∴∠BAC=∠ACB=60°,
∵∠ABC=60°,∠ADC=120°,
∴點A,點B,點C,點D四點共圓,
∴∠BAC=∠BDC=60°,∠ADB=∠ACB=60°,
∵BM⊥AD,BN⊥CD,
∴∠MBD=30°,∠DBN=30°,且BD=2,
∴MD=DN=BD=,
∴BM=BN=MD=,
∵四邊形BEDF的面積=S△DEB+S△DFB,
∴四邊形BEDF的面積=DE×BM+×DF×BN=××(DE+DF)=;
解決問題:
(3)如圖③,連接AC,BD,過點A作AM⊥CD,AN⊥BC,
∵AB=AD=4km,∠DAB=90°,
∴∠ADB=∠ABD=45°,BD=4km,
∵∠DAB+∠BCD=90°+90°=180°,
∴點A,點B,點C,點D四點共圓,且BD是直徑,
∴∠ACM=∠ABD=45°,∠ADB=∠ACB=45°,
∵AM⊥CD,AN⊥BC,
∴∠MAC=∠MCA=45°,∠NAC=∠ACN=45°,
∴AM=CM=AC,AN=CN=AC,
∵四邊形EAFC的面積=S△ACE+S△AFC,
∴四邊形EAFC的面積=CE×AM+×CF×AN=×AM×(CE+CF)=AC×4=AC,
∴當AC為最大值時,四邊形EAFC的面積有最大值,
∵AC是以BD為直徑的圓中的弦,
∴AC的最大值為直徑,
∴當AC=4km,四邊形EAFC的面積最大值為8km2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)城在冬天到來之際進了一批保暖衣,男生的保暖衣每件價格60元,女生的保暖衣每件價格40元,第一批共購買100件.
(1)第一批購買的保暖衣的總費用不超過5400元,求女生保暖衣最少購買多少件?
(2)第二批購買保暖衣,購買男、女生保暖衣的件數(shù)比為,價格保持第一批的價格不變;第三批購買男生保暖衣的價格在第一批購買的價格上每件減少了元 ,女生保暖衣的價格比第一批購買的價格上每件增加了元,男生保暖衣的數(shù)量比第二批增加了,女生保暖衣的數(shù)量比第二批減少了,第二批與第三批購買保暖衣的總費用相同,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑為10的⊙O經(jīng)過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+48=0的兩根.
(1)求線段OA、OB的長;
(2)已知點C在劣弧OA上,連結(jié)BC交OA于D,當OC2=CD·CB時,求C點的坐標;
(3)在⊙O上是否存在點P,使S△POD=S△ABD.若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當將遮陽傘撐開至OD位置時,測得∠ODB=45°,當將遮陽傘撐開至OE位置時,測得∠OEC=30°,且此時遮陽傘邊沿上升的豎直高度BC為20cm,求若當遮陽傘撐開至OE位置時傘下陰涼面積最大,求此時傘下半徑EC的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D為邊BC上一點,且AD平分∠BAC,DE⊥AB于點E,DF⊥AC于點F.
(1)求證:BE=CF;
(2)若∠B=40°,求∠ADF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系中,點A、B分別在x軸和y軸上,且OA=OB,邊AC所在直線解析式為y=x﹣,若△ABC的內(nèi)心在y軸上,則tan∠ACB的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結(jié)論中正確的是 .
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,AE=;(5)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+x﹣4與x軸交于A,B(A在B的左側(cè)),與y軸交于點C,拋物線上的點E的橫坐標為3,過點E作直線l1∥x軸.
(1)點P為拋物線上的動點,且在直線AC的下方,點M,N分別為x軸,直線l1上的動點,且MN⊥x軸,當△APC面積最大時,求PM+MN+EN的最小值;
(2)過(1)中的點P作PD⊥AC,垂足為F,且直線PD與y軸交于點D,把△DFC繞頂點F旋轉(zhuǎn)45°,得到△D'FC',再把△D'FC'沿直線PD平移至△D″F′C″,在平面上是否存在點K,使得以O,C″,D″,K為頂點的四邊形為菱形?若存在直接寫出點K的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com