【題目】如圖,在ABC中,按以下步驟作圖:①分別以點(diǎn)B和點(diǎn)C為圓心,大于BC的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)MN;②作直線MN,分別交邊AB,BC于點(diǎn)DE,連接CD.若∠BCA90°AB8,則CD的長(zhǎng)為_____

【答案】4

【解析】

連接CD,由線段垂直平分線的性質(zhì)可得CDBD,再利用角之間的等量關(guān)系可得∠A=∠ACD,所以CDAD,可知CDAB,易得CD的長(zhǎng).

解:連接CD

由作圖可知:點(diǎn)M、點(diǎn)N在線段BC的垂直平分線上,

MN垂直平分線段BC

CDBD,

∴∠DCB=∠B

∵∠BCA90°,

∴∠A+B=∠BCD+ACD90°,

∴∠A=∠ACD

CDAD

CDAB,

AB8

CD4,

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)與x軸交于點(diǎn)A(﹣2,0)、B40),與y軸交于點(diǎn)C,且OC2OA

1)該拋物線的解析式為   ;

2)直線ykx+lk0)與y軸交于點(diǎn)D,與直線BC交于點(diǎn)M,與拋物線上直線BC上方部分交于點(diǎn)P,設(shè)m,求m的最大值及此時(shí)點(diǎn)P的坐標(biāo);

3)若點(diǎn)D、P為(2)中求出的點(diǎn),點(diǎn)Qx軸的一個(gè)動(dòng)點(diǎn),點(diǎn)N為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)P、D、Q、N為頂點(diǎn)的四邊形為矩形時(shí),直接寫(xiě)出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,∠ACB=30°,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到DEC,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是D、E,點(diǎn)F是邊AC中點(diǎn),①BCE是等邊三角形,②DE=BF,③ABC≌△CFD,④四邊形BEDF是平行四邊形.則其中正確結(jié)論的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201912月以來(lái),湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實(shí)該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強(qiáng).為了有效地避免交叉感染,需要采取以下防護(hù)措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹(jǐn)慎吃.某公司為了解員工對(duì)防護(hù)措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過(guò)網(wǎng)上問(wèn)卷調(diào)查的方式進(jìn)行了隨機(jī)抽樣調(diào)查(每名員工必須且只能選擇一項(xiàng)),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)上面的信息,解答下列問(wèn)題

1)本次共調(diào)查了_______名員工,條形統(tǒng)計(jì)圖中________;

2)若該公司共有員工1000名,請(qǐng)你估計(jì)不了解防護(hù)措施的人數(shù);

3)在調(diào)查中,發(fā)現(xiàn)有4名員工對(duì)防護(hù)措施很了解,其中有3名男員工、1名女員工.若準(zhǔn)備從他們中隨機(jī)抽取2名,讓其在公司群內(nèi)普及防護(hù)措施,求恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB=90°,∠OAB=30°,反比例函數(shù)的圖象過(guò)點(diǎn),反比例函數(shù)的圖象過(guò)點(diǎn)A

1)求的值.

2)過(guò)點(diǎn)BBCx軸,與雙曲線交于點(diǎn)C,求△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點(diǎn)A(﹣10),B3,0),點(diǎn)C三點(diǎn).

1)求拋物線的解析式;

2x軸上是否存在點(diǎn)P,使PC+PB最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及PC+PB的最小值;若不存在,請(qǐng)說(shuō)明理由;

3)連接BC,設(shè)E為線段BC中點(diǎn).若M是拋物線上一動(dòng)點(diǎn),將點(diǎn)M繞點(diǎn)E旋轉(zhuǎn)180°得到點(diǎn)N,當(dāng)以BC、M、N為頂點(diǎn)的四邊形是矩形時(shí),直接寫(xiě)出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實(shí)線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含ab的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)b,c是常數(shù),圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)之間,對(duì)稱軸是對(duì)于下列說(shuō)法:;;;為實(shí)數(shù));(5)當(dāng)時(shí),,其中正確的是(

A.1)(2)(4B.1)(2)(5C.2)(3)(4D.3)(4)(5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在⊙O 中,AB 為直徑,點(diǎn) P BA 的延長(zhǎng)線上,PC 為⊙O 的切線,過(guò)點(diǎn) A AHPC 于點(diǎn) H, 交⊙O 于點(diǎn) D,連接 BC、BD、AC

(1)如圖 1,求證:∠CAH=CAB;

(2)如圖 2,過(guò)點(diǎn) C CEAB 于點(diǎn) E,求證:BD=2CE;

(3)如圖 3,在(2)的條件下,點(diǎn) F BC 上,連接 DF、EF,若 BG=2AE,∠CFE=45°,OG=1,求線段 EF 的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案