11.計(jì)算:
(1)(3x23•(-4y32÷(6xy)3; 
(2)12x5y6z4÷(-3x2y2z)÷2x3y3z2;
(3)(-12)2×10-6÷(2×105); 
(4)${(\frac{5}{2}{a^{n+1}}{b^2})^2}÷{(-\frac{1}{4}{a^n}{b^2})^2}•{(-\frac{2}{5}{a^n}{b^n})^2}$;
(5)(5×1053÷[(2.5×103)×(-4×10-72];
(6)${(2{a^{3n}})^2}•{(-\frac{1}{3}{a^{2n}})^3}•{(6{a^n})^2}÷15{(-{a^5})^{2n-1}}$;
(7)(-3a3b2c)3•2ac3÷(-18a4b5)÷(3a2c23;
(8)[-5(a+3b)m]3÷[-5(a+3b)m-2]2

分析 (1)首先利用積的乘方運(yùn)算法則化簡(jiǎn),進(jìn)而利用整式的除法運(yùn)算法則求出答案;
(2)直接利用整式的除法運(yùn)算法則求出答案;
(3)首先利用積的乘方運(yùn)算法則化簡(jiǎn),進(jìn)而利用整式的除法運(yùn)算法則求出答案;
(4)首先利用積的乘方運(yùn)算法則化簡(jiǎn),進(jìn)而利用整式的乘除法運(yùn)算法則求出答案;
(5)首先利用積的乘方運(yùn)算法則化簡(jiǎn),進(jìn)而利用整式的除法運(yùn)算法則求出答案;
(6)首先利用積的乘方運(yùn)算法則化簡(jiǎn),進(jìn)而利用整式的乘除法運(yùn)算法則求出答案;
(7)首先利用積的乘方運(yùn)算法則化簡(jiǎn),進(jìn)而利用整式的除法運(yùn)算法則求出答案;
(8)首先利用積的乘方運(yùn)算法則化簡(jiǎn),進(jìn)而利用整式的乘除法運(yùn)算法則求出答案.

解答 解:(1)(3x23•(-4y32÷(6xy)3
=27x6•16y6÷216x3y3
=2x3y3

(2)12x5y6z4÷(-3x2y2z)÷2x3y3z2
=-4x3y4z3÷2x3y3z2
=-2yz;

(3)(-12)2×10-6÷(2×105
=144×10-6÷(2×105
=7.2×10-10;

(4)${(\frac{5}{2}{a^{n+1}}{b^2})^2}÷{(-\frac{1}{4}{a^n}{b^2})^2}•{(-\frac{2}{5}{a^n}{b^n})^2}$
=$\frac{25}{4}$a2n+2b4÷$\frac{1}{16}$a2nb4•$\frac{4}{25}$a2nb2n
=$\frac{25}{4}$×16×$\frac{4}{25}$a2n+2-2n+2nb4-4+2n
=16a2n+2b2n;

(5)(5×1053÷[(2.5×103)×(-4×10-72]
=125×1015÷[(2.5×103)×(16×10-14)]
=125×1015÷(4×10-10
=3.125×1026;

(6)${(2{a^{3n}})^2}•{(-\frac{1}{3}{a^{2n}})^3}•{(6{a^n})^2}÷15{(-{a^5})^{2n-1}}$
=4a6n•(-$\frac{1}{27}$a6n)•36a2n÷15(-a10n-5
=$\frac{16}{45}{a^{4n+5}}$;

(7)(-3a3b2c)3•2ac3÷(-18a4b5)÷(3a2c23
=-27a9b6c3•2ac3÷(-18a4b5)÷(27a6c6),
=-54a10b6c6÷(-18a4b5)÷(27a6c6),
=$\frac{1}{9}b$;

(8)[-5(a+3b)m]3÷[-5(a+3b)m-2]2
=-125(a+3b)3m÷25(a+3b)2m-4
=-5(a+3b)m+4

點(diǎn)評(píng) 此題主要考查了積的乘方運(yùn)算法則以及整式的乘除運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.旺都超市進(jìn)了一批貨物,出售時(shí)要在進(jìn)價(jià)的基礎(chǔ)上加上一定利潤(rùn),其數(shù)量x(千克)與售價(jià)y(元)之間的關(guān)系如表:
數(shù)量x千克售價(jià)y元
 14+0.2
28+0.4
312+0.6
416+0.8
520+1
(1)用含x的式子表示y,得y=4.2x;
(2)計(jì)算當(dāng)售價(jià)y=33.6時(shí),貨物的數(shù)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某商店試銷(xiāo)一款運(yùn)動(dòng)服,經(jīng)市場(chǎng)調(diào),發(fā)現(xiàn)平均日銷(xiāo)量y(件)是銷(xiāo)售單價(jià)x(元/件)的一次函數(shù),其圖象如圖所示.
(1)根據(jù)圖象,求y與x之間的函數(shù)表達(dá)式;
(2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),平均日銷(xiāo)售量是150件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列說(shuō)法正確的有( 。
①所有的有理數(shù)都能用數(shù)軸上的點(diǎn)表示;
②符號(hào)不同的兩個(gè)數(shù)互為相反數(shù);
③有理數(shù)分為正數(shù)和負(fù)數(shù);
④兩數(shù)相減,差一定小于被減數(shù);
⑤兩數(shù)相加,和一定大于任何一個(gè)加數(shù).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.?dāng)?shù)軸上與表示2的點(diǎn)的距離3個(gè)長(zhǎng)度單位的點(diǎn)所表示的數(shù)是-1或5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.拋物線(xiàn)y=x2-2是由拋物線(xiàn)y=x2( 。
A.向下平移2個(gè)單位長(zhǎng)度得到B.向上平移2個(gè)單位長(zhǎng)度得到
C.向左平移2個(gè)單位長(zhǎng)度得到D.向右平移2個(gè)單位長(zhǎng)度得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖所示,給出下列條件:
①∠B=∠ACD;②∠ADC=∠ACB;③$\frac{AC}{CD}=\frac{AB}{BC}$;④AC2=AD•AB;⑤$\frac{AD}{AC}=\frac{CD}{BC}$
其中單獨(dú)能夠判定△ABC∽△ACD的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.冬日的某個(gè)下午,小芳和爸爸正在陽(yáng)光下散步,爸爸身高1.8m,他在地面上的影長(zhǎng)為2.4m.若小芳高1.5m,則她的影長(zhǎng)為( 。
A.1.5mB.2.4mC.1.8mD.2m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若二次函數(shù)y=kx2-2x-1的圖象與x軸有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是k>-1且k≠0.

查看答案和解析>>

同步練習(xí)冊(cè)答案