【題目】如圖,在矩形中,點(diǎn)上一點(diǎn),將沿翻折后點(diǎn)恰好落在邊上的點(diǎn)處,過(guò),交,連接

求證:四邊形是菱形;

,,求四邊形的面積.

【答案】(1)見(jiàn)解析;(2)20

【解析】

1)根據(jù)翻折的性質(zhì)可得∠1=2EC=EF,再根據(jù)同角的余角相等求出∠1=3從而得到∠2=3,根據(jù)同位角相等,兩直線(xiàn)平行可得EFCG再根據(jù)垂直于同一直線(xiàn)的兩直線(xiàn)平行求出FGCD,從而求出四邊形CEFG是平行四邊形然后根據(jù)鄰邊相等的平行四邊形是菱形證明;

2)根據(jù)翻折的性質(zhì)可得BF=BC=10,然后利用勾股定理列式求出AF,從而得到DF的長(zhǎng)設(shè)CE=EF=x,表示出DE.在RtDEF,利用勾股定理列出方程求出x的值,再根據(jù)菱形的面積公式列式計(jì)算即可得解

1)根據(jù)翻折1=2,EC=EF

FHBC,∴∠3+∠4=90°.

又∵∠1+∠4=BCD=90°,∴∠1=3,∴∠2=3EFCG

又∵FHBC,BCD=90°,FGCD∴四邊形CEFG是平行四邊形

EC=EF(已證),∴四邊形CEFG是菱形

2)根據(jù)翻折,BF=BC=10.在RtABFAF===6,DF=ADAF=106=4,設(shè)CE=EF=x,DE=CDCE=8x.在RtDEF,DF2+DE2=EF242+8x2=x2,解得x=5所以,四邊形CEFG的面積=CEDF=5×4=20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)MN與線(xiàn)段AB相交于點(diǎn)O,點(diǎn)C、點(diǎn)D分別為射線(xiàn)ON,OM上兩點(diǎn),且滿(mǎn)足∠ACN=ODB=45°.

(1)如圖1,當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),且AO=OB,請(qǐng)直接寫(xiě)出ACBD的數(shù)量關(guān)系;

(2)將圖1中的MN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α°(0a45),如圖2所示,若AO=OB,(1)中的ACBD的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;

(3)如圖3,若AO=kOB.

①請(qǐng)求出的值;

②若k=,AOC=30°,BD=3,請(qǐng)直接寫(xiě)出OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,等腰三角形ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),DEAB與點(diǎn)E、DFAC與點(diǎn)F.求證:DE= DF;

2)如圖2,等腰三角形ABC中,AB=AC=13BC=10,點(diǎn)DBC邊上的動(dòng)點(diǎn),DEAB與點(diǎn)E、DFAC與點(diǎn)F.請(qǐng)問(wèn)DE+DF的值是否隨點(diǎn)D位置的變化而變化?若不變,請(qǐng)直接寫(xiě)出DE+DF的值;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,,點(diǎn)在線(xiàn)段上,點(diǎn)在線(xiàn)段上,

1)若,求四邊形的面積;

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),過(guò)作直線(xiàn),設(shè)的平分線(xiàn)于點(diǎn),交的平分線(xiàn)于點(diǎn)

探究:線(xiàn)段的數(shù)量關(guān)系并加以證明;

當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),且滿(mǎn)足什么條件時(shí),四邊形是正方形?

當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),四邊形________是菱形嗎?(填可能不可能”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,以為直徑的,,點(diǎn)延長(zhǎng)線(xiàn)上的一點(diǎn),延長(zhǎng)交,.小華得出個(gè)結(jié)論:;②;③

其中正確的是(

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)邊長(zhǎng)為a+b的正方形圖形分割成四部分(兩個(gè)正方形和兩個(gè)長(zhǎng)方形),請(qǐng)認(rèn)真觀察圖形,解答下列問(wèn)題:

(1)根據(jù)圖中條件,請(qǐng)用兩種方法表示該圖形的總面積(用含ab的代數(shù)式表示出來(lái));

(2)如果圖中的abab)滿(mǎn)足a2+b2=57,ab=12,求a+b的值;

(3)已知(5+2x2+(2x +3)2=60,求(5+2x)(2x+3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=4,點(diǎn)E、F分別在BC、CD上,若AE=EAF=45°,則AF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,直線(xiàn)y=kx+bBC于點(diǎn)E(1,m),交AB于點(diǎn)F(4,),反比例函數(shù)y=(x0)的圖象經(jīng)過(guò)點(diǎn)E,F(xiàn).

(1)求反比例函數(shù)及一次函數(shù)解析式;

(2)點(diǎn)P是線(xiàn)段EF上一點(diǎn),連接PO、PA,若△POA的面積等于△EBF的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案