【題目】在平面直角坐標(biāo)系xOy中,對于點(diǎn)P與圖形W,若點(diǎn)Q為圖形W上任意一點(diǎn),點(diǎn)Q關(guān)于第一、三象限角平分線的對稱點(diǎn)為Q,且線段PQ,的中點(diǎn)為Mm,0,則稱點(diǎn)P是圖形W關(guān)于點(diǎn)Mm,0)的關(guān)聯(lián)點(diǎn)”.

1)如圖1,若點(diǎn)P是點(diǎn)Q(0,)關(guān)于原點(diǎn)的關(guān)聯(lián)點(diǎn),則點(diǎn)P的坐標(biāo)為 ;

2)如圖2,在ABC中,A2,2),B-2,0),C0,-2),

①將線段AO向右平移dd>0)個(gè)單位長度,若平移后的線段上存在兩個(gè)ABC關(guān)于點(diǎn)(2,0)的關(guān)聯(lián)點(diǎn),則d的取值范圍是 .

②已知點(diǎn)Sn+2,0)和點(diǎn)Tn+4,0,若線段ST上存在ABC關(guān)于點(diǎn)Nn,0)的關(guān)聯(lián)點(diǎn),求n的取值范圍.

【答案】1,0);(2)①;②.

【解析】

1)設(shè)P點(diǎn)坐標(biāo)為(a,b),根據(jù)關(guān)聯(lián)點(diǎn)的定義、中點(diǎn)的坐標(biāo)公式和關(guān)于第一三象限角平分線對稱的兩點(diǎn)坐標(biāo)規(guī)律即可求出;

2)①先求出原ACx軸的交點(diǎn),然后根據(jù)△ABC是軸對稱圖形,且對稱軸為第一、三象限角平分線和關(guān)聯(lián)點(diǎn)的定義可得:關(guān)聯(lián)點(diǎn)定義中QOA關(guān)于(2,0)的對稱線段OA與△ABC邊的交點(diǎn),平移線段OA可發(fā)現(xiàn):當(dāng)AC左側(cè),O過點(diǎn)()或在()右側(cè)時(shí)符合題意,最后列不等式即可;

②由S、T的坐標(biāo)可知:線段STx軸的一部分,線段ST關(guān)于N點(diǎn)的對稱線段S T也是x軸的一部分,從而判斷出定義中Q是△ABC邊與x軸的交點(diǎn),由圖可知:點(diǎn)Q只有(-2,0)和(1,0)兩種可能,再根據(jù)線段S T需過(-2,0)或(1,0)分類討論并列不等式即可.

解:(1)設(shè)P點(diǎn)坐標(biāo)為(ab

∵點(diǎn)Q關(guān)于第一、三象限角平分線的對稱點(diǎn)為Q

∵根據(jù)關(guān)于第一三象限角平分線對稱的兩點(diǎn)坐標(biāo)規(guī)律:點(diǎn)Q的橫坐標(biāo)為點(diǎn)Q的縱坐標(biāo),點(diǎn)Q的縱坐標(biāo)為點(diǎn)Q的橫坐標(biāo)

點(diǎn)Q的坐標(biāo)為:(,0

點(diǎn)P是點(diǎn)Q(0,)關(guān)于原點(diǎn)的關(guān)聯(lián)點(diǎn)

P Q的中點(diǎn)為原點(diǎn)

解得:

P點(diǎn)坐標(biāo)為:,0);

2)設(shè)原AC的解析式為y=kxb

AC兩點(diǎn)坐標(biāo)代入:

解得:

∴原直線AC的解析式為:y=2x-2

當(dāng)y=0時(shí),解得:x=1

故原ACx軸的交點(diǎn)為(1,0

由圖可知:△ABC是軸對稱圖形,且對稱軸為第一、三象限角平分線

關(guān)聯(lián)點(diǎn)的定義可知:定義中Q在△ABC邊上

∴點(diǎn)Q也在△ABC邊上

∵將線段AO向右平移dd>0)個(gè)單位長度,若平移后的線段上存在兩個(gè)△ABC關(guān)于點(diǎn)(2,0)的關(guān)聯(lián)點(diǎn),

∴點(diǎn)Q和線段OA上的點(diǎn)必關(guān)于點(diǎn)(2,0)對稱,此時(shí)O點(diǎn)坐標(biāo)為(d,0),A點(diǎn)坐標(biāo)為(2d,2

故作出OA關(guān)于(2,0)的對稱線段OA,其中O坐標(biāo)為(4d,0),A坐標(biāo)為(2d,-2),Q也必在OA

即點(diǎn)QOA與△ABC邊的交點(diǎn),

∵線段上存在兩個(gè)△ABC關(guān)于點(diǎn)(2,0)的關(guān)聯(lián)點(diǎn),

OA與△ABC邊必須有兩個(gè)交點(diǎn)才滿足題意

如圖中藍(lán)線所示,平移OA可發(fā)現(xiàn),當(dāng)AC重合時(shí),與ABC邊有一個(gè)交點(diǎn),繼續(xù)向左平移即可有兩個(gè)交點(diǎn),當(dāng)O過點(diǎn)()也有兩個(gè)交點(diǎn),繼續(xù)向左平移就只有一個(gè)交點(diǎn)

故當(dāng)AC左側(cè),O過點(diǎn)()或在()右側(cè)時(shí)符合題意

解得:.

②∵點(diǎn)Sn+2,0)和點(diǎn)Tn+4,0

∴線段STx軸的一部分

∵線段ST上存在ABC關(guān)于點(diǎn)Nn,0)的關(guān)聯(lián)點(diǎn)

∴故ST關(guān)于點(diǎn)Nn,0)的對稱點(diǎn)S坐標(biāo)為(n2,0),T坐標(biāo)為(n4,0),定義中Q在線段S T上(x軸上),

Q即為△ABC邊與x軸的交點(diǎn)

由圖可知,點(diǎn)Q只有(-20)和(1,0)兩種可能

線段S T需過(-2,0)或(1,0

當(dāng)S T過(-20)時(shí)

解得:;

當(dāng)S T過(1,0)時(shí)

解得:.

綜上所述:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,點(diǎn)DE分別在邊BC,AC上,且DEAB,過點(diǎn)EEFDE,交BC的延長線于點(diǎn)F

1)求∠F的大;

2)若CD=3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線a≠0)經(jīng)過A﹣1,0)、B3,0)、C0,﹣3)三點(diǎn),直線l是拋物線的對稱軸.

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)點(diǎn)P是直線l上的一個(gè)動點(diǎn),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和最短時(shí),求點(diǎn)P的坐標(biāo);

3)點(diǎn)M也是直線l上的動點(diǎn),且△MAC為等腰三角形,請直接寫出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在⊙O的直徑AB延長線上,點(diǎn)C在⊙O上,過點(diǎn)DED⊥AD,與AC的延長線相交于點(diǎn)E,且CD=DE.

(1)求證:CD為⊙O的切線;

(2)AB=12,且BC=CE時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列個(gè)代數(shù)式:,,,,中,其值為正的式子的個(gè)數(shù)是(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為6的等邊三角形,P是AC邊上一動點(diǎn),由A向C運(yùn)動(與A、C不重合),Q是CB延長線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長線方向運(yùn)動(Q不與B重合),過P作PEAB于E,連接PQ交AB于D.

(1)當(dāng)BQD=30°時(shí),求AP的長;

(2)當(dāng)運(yùn)動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“水是生命之源”,為了提高市民節(jié)約用水意識,市自來水公司調(diào)整了收費(fèi)標(biāo)準(zhǔn),規(guī)定每戶每月標(biāo)準(zhǔn)用水量為a噸,如果用戶一個(gè)月用水不超過標(biāo)準(zhǔn)用水量,那么每噸水按0.6元收費(fèi);若超過了標(biāo)準(zhǔn)用水量,則超過的部分按每噸a元收費(fèi).某戶4月份用水8噸,平均每噸水0.75元;5月份用水5.5噸,平均每噸0.6元,則a的值是( )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)們每月零花錢數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分學(xué)生,并根據(jù)調(diào)查結(jié)果繪制出如下不完整的統(tǒng)計(jì)圖表.

請根據(jù)以上圖表,解答下列問題:

(1)這次被調(diào)查的人數(shù)共有 人,a= ;

(2)計(jì)算并補(bǔ)全頻數(shù)分布直方圖;

(3)請估計(jì)該校1500名學(xué)生中每月零花錢數(shù)額低于90元的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案