【題目】下面每個語句中,都給出了兩件可能發(fā)生的事情,其中發(fā)生的機會相同的是( )
A. 兩次擲骰子,擲出的數(shù)的和大于與擲出的數(shù)的和不大于
B. 擲骰子擲出的數(shù)是偶數(shù)與擲出的數(shù)是奇數(shù)
C. 最后一節(jié)課是數(shù)學(xué)與最后一節(jié)課不是數(shù)學(xué)
D. 冬天里下雪和夏天里下雪
【答案】B
【解析】
分別根據(jù)事件發(fā)生的大小關(guān)系求出其概率進(jìn)而判斷得出即可.
A、根據(jù)兩次擲骰子,擲出的數(shù)的和大于4的概率為:擲出的數(shù)的和不大于4的概率為:,故其概率不相等,不符合題意;
B、擲骰子擲出的數(shù)是偶數(shù)的概率為: 擲出的數(shù)是奇數(shù)的概率為:,故其概率相等,符合題意;
C、最后一節(jié)課是數(shù)學(xué)與最后一節(jié)課不是數(shù)學(xué),由于科目較多,概率不相等,概率不相等,不符合題意;
D、冬天里下雪是隨機事件,夏天里下雪是不可能事件,故其概率不相等,不符合題意.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸、軸分別交于,點,與的圖象交于、點,是點關(guān)于點的中心對稱點,于,若的面積與的面積之和為時,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等邊內(nèi)一點將繞點C按順時針方向旋轉(zhuǎn)得,連接已知.
求證:是等邊三角形;
當(dāng)時,試判斷的形狀,并說明理由;
探究:當(dāng)為多少度時,是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象經(jīng)過點,且與軸交點的橫坐標(biāo)分別為、,其中,,下列結(jié)論:
①;②;③;④.
其中正確的結(jié)論有________.(填寫正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E在CD邊上,將△ADE沿AE對折得到△AFE,延長EF交BC邊于點G,連結(jié)AG.給出結(jié)論:①△ABG≌△AFG;②∠EAG=45°;③∠AGB+∠AED=135°.其中正確的結(jié)論有( )
A.只有①B.①②C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們實驗的結(jié)果如下:
朝上的點數(shù) | ||||||
出現(xiàn)的次數(shù) |
請計算“點朝上”的頻率和“點朝上”的頻率.
一位同學(xué)說:“根據(jù)實驗,一次實驗中出現(xiàn)點朝上的概率最大”.這位同學(xué)的說法正確嗎?為什么?
小明和小亮各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形DEF是三角形ABC經(jīng)過某種變換得到的圖形,點A與點D,點B與點E,點C與點F分別是對應(yīng)點,觀察點與點的坐標(biāo)之間的關(guān)系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標(biāo),并說說對應(yīng)點的坐標(biāo)有哪些特征;
(2)若點P(a+3,4-b)與點Q(2a,2b-3)也是通過上述變換得到的對應(yīng)點,求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com