【題目】如圖,AOB=30°,AOB內(nèi)有一定點P,且OP=10.在OA上有一點Q,OB上有一點R.若PQR周長最小,則最小周長是( )

A.10 B.15 C.20 D.30

【答案】A

【解析】

試題分析:先畫出圖形,作PMOA與OA相交于M,并將PM延長一倍到E,即ME=PM.作PNOB與OB相交于N,并將PN延長一倍到F,即NF=PN.連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則PQR即為周長最短的三角形.再根據(jù)線段垂直平分線的性質(zhì)得出PQR=EF,再根據(jù)三角形各角之間的關系判斷出EOF的形狀即可求解.

解:設POA=θ,則POB=30°﹣θ,作PMOA與OA相交于M,并將PM延長一倍到E,即ME=PM.

作PNOB與OB相交于N,并將PN延長一倍到F,即NF=PN.

連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則PQR即為周長最短的三角形.

OA是PE的垂直平分線,

EQ=QP;

同理,OB是PF的垂直平分線,

FR=RP

∴△PQR的周長=EF.

OE=OF=OP=10,且EOF=EOP+POF=2θ+2(30°﹣θ)=60°,

∴△EOF是正三角形,EF=10,

即在保持OP=10的條件下PQR的最小周長為10.

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.

(1)△ABC的面積為______;

(2)將△ABC經(jīng)過平移后得到△A′B′C′,圖中標出了點B的對應點B′,補全△A′B′C′;

(3)若連接AA′BB′,則這兩條線段之間的關系是______;

(4)在圖中畫出△ABC的高CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是假命題的是(

A.經(jīng)過兩點有且只有一條直線

B.三角形的中位線平行且等于第三邊的一半

C.平行四邊形的對角線相等

D.圓的切線垂直于經(jīng)過切點的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程隊修建一條總長為1860米的公路,在使用舊設備施工17天后,為盡快完成任務,工程隊引進了新設備,從而將工作效率提高了50%,結(jié)果比原計劃提前15天完成任務.

(1)工程隊在使用新設備后每天能修路多少米?

(2)在使用舊設備和新設備工作效率不變的情況下,工程隊計劃使用舊設備m天,使用新設備n(16≤n≤26)天修建一條總長為1500米的公路,使用舊設備一天需花費16000元,使用新設備一天需花費25000元,當m、n分別為何值時,修建這條公路的總費用最少,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,點A(m,﹣2)、B(1,n﹣m)關于x軸對稱,則m、n的值為( 。

A. m=1,n=1 B. m=﹣1,n=1 C. m=1,n=3 D. m=1,n=﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個多邊形的內(nèi)角和是540°,則這個多邊形是 邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著居民經(jīng)濟收入的不斷提高以及汽車業(yè)的快速發(fā)展,家用汽車已越來越多地進入普通家庭,抽樣調(diào)查顯示,截止2015年底某市汽車擁有量為16.9萬輛.己知2013年底該市汽車擁有量為10萬輛,設2013年底至2015年底該市汽車擁有量的平均增長率為x,根據(jù)題意列方程得(

A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1x)2=16.9 D.10(12x)=16.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中有兩點M(a,b),N(c,d),規(guī)定(a,b)(c,d)=(a+c,b+d),則稱點Q(a+c,b+d)為M,N的“和點”.若以坐標原點O與任意兩點及它們的“和點”為頂點能構(gòu)成四邊形,則稱這個四邊形為“和點四邊形”,現(xiàn)有點A(2,5),B(﹣1,3),若以O,A,B,C四點為頂點的四邊形是“和點四邊形”,則點C的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC≌△DEF,B=40°C=60°,D= °

查看答案和解析>>

同步練習冊答案