【題目】如圖,已知拋物線y=ax2+bx的頂點(diǎn)為C(1,),P是拋物線上位于第一象限內(nèi)的一點(diǎn),直線OP交該拋物線對(duì)稱軸于點(diǎn)B,直線CP交x軸于點(diǎn)A.
(1)求該拋物線的表達(dá)式;
(2)如果點(diǎn)P的橫坐標(biāo)為m,試用m的代數(shù)式表示線段BC的長;
(3)如果△ABP的面積等于△ABC的面積,求點(diǎn)P坐標(biāo).
【答案】(1) y=x2-2x;(2)BC=m-1;(3) P的坐標(biāo)為()
【解析】分析:(1)由對(duì)稱軸公式,以及已知頂點(diǎn)C坐標(biāo),利用待定系數(shù)法確定出解析式即可;
(2)設(shè)出P坐標(biāo),令BC與x軸交點(diǎn)為M,過點(diǎn)P作PN⊥x軸,垂足為點(diǎn)N,表示出PN,ON,OM,利用比例表示出BM,進(jìn)而表示出BC即可;
(3)設(shè)出P坐標(biāo),由兩三角形面積相等得到AC=AP,過點(diǎn)P作PQ⊥BC交BC于點(diǎn)Q,列出關(guān)于t的方程,求出方程的解確定出t的值,即可求出P坐標(biāo).
詳解:(1)∵拋物線y=ax2+bx的頂點(diǎn)為C(1,﹣1),∴,解得:,∴拋物線的表達(dá)式為:y=x2﹣2x;
(2)∵點(diǎn)P的橫坐標(biāo)為m,∴點(diǎn)P的縱坐標(biāo)為:m2﹣2m,令BC與x軸交點(diǎn)為M,過點(diǎn)P作PN⊥x軸,垂足為點(diǎn)N.∵P是拋物線上位于第一象限內(nèi)的一點(diǎn),∴PN=m2﹣2m,ON=m,OM=1,由=,得:=,∴BM=m﹣2.∵點(diǎn)C的坐標(biāo)為(1,﹣1),∴BC=m﹣2+1=m﹣1;
(3)令P(t,t2﹣2t).∵△ABP的面積等于△ABC的面積,∴AC=AP,過點(diǎn)P作PQ⊥BC交BC于點(diǎn)Q,∴CM=MQ=1,可得:t2﹣2t=1,解得:t=1+(t=1﹣舍去),∴P的坐標(biāo)為(1+,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)c在直線AB上,若AC= 4cm,BC= 6cm,E、F分別為線段AC、BC的中點(diǎn),則EF=________________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①平角就是一條直線;②直線比射線線長;③平面內(nèi)三條互不重合的直線的公共點(diǎn)個(gè)數(shù)有0個(gè)、1個(gè)、2個(gè)或3個(gè);④連接兩點(diǎn)的線段叫兩點(diǎn)之間的距離;⑤兩條射線組成的圖形叫做角;⑥一條射線把一個(gè)角分成兩個(gè)角,這條射線是這個(gè)角的角平分線,其中正確的有( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一張一個(gè)角為30°,最小邊長為4的直角三角形紙片,沿圖中所示的中位線剪開后,將兩部分拼成一個(gè)四邊形,所得四邊形的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗暑假期間參加社會(huì)實(shí)踐活動(dòng),從某批發(fā)市場(chǎng)以批發(fā)價(jià)每個(gè)m元的價(jià)格購進(jìn)100個(gè)手機(jī)充電寶,然后每個(gè)加價(jià)n元到市場(chǎng)出售(結(jié)果用含m,n的式子表示)
(1)求售出100個(gè)手機(jī)充電寶的總售價(jià)為多少元?
(2)由于開學(xué)臨近,小麗在成功售出60個(gè)充電寶后,決定將剩余充電寶按售價(jià)8折出售,并很快全部售完.(注:售價(jià)的8折即按原售價(jià)的80%出售)
①她的總銷售額是多少元?
②假如不采取降價(jià)銷售,且也全部售完,她將比實(shí)際銷售多盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地重視生態(tài)建設(shè),大力發(fā)展旅游業(yè),各地旅游團(tuán)紛沓而至,某旅游團(tuán)上午6時(shí)從旅游館出發(fā),乘汽車到距離的旅游景點(diǎn)觀光,該汽車離旅游館的距離與時(shí)間的關(guān)系可以用如圖的折線表示.根據(jù)圖象提供的有關(guān)信息,解答下列問題:
(1)求該團(tuán)旅游景點(diǎn)時(shí)的平均速度是多少?
(2)該團(tuán)在旅游景點(diǎn)觀光了多少小時(shí)?
(3)求該團(tuán)返回到賓館的時(shí)刻是幾時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個(gè)三角形,分別連接這個(gè)三角形三邊的中點(diǎn)得到圖2;再分別連接圖2中間小三角形的中點(diǎn),得到圖3.(若三角形中含有其它三角形則不記入)
按上面方法繼續(xù)下去,第20個(gè)圖有_____個(gè)三角形;第n個(gè)圖中有_____個(gè)三角形.(用n的代數(shù)式表示結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形的苗圃圓.其中一邊靠墻,另外三邊用長為40m的籬笆圍成.已知墻長為18m(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊AB為xm
(1)用含有x的式子表示AD,并寫出x的取值范圍;
(2)若苗圃園的面積為192m2平方米,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象如圖所示,點(diǎn),是該二次函數(shù)圖象上的兩點(diǎn),其中,則下列結(jié)論正確的是( )
A. B. C. 函數(shù)的最小值是D. 函數(shù)的最小值是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com