分析 (1)根據(jù)一元二次方程的定義和根的判別式得到m-1≠0且△=22-4(m-1)×(-3)=12m-8>0,然后求出兩不等式的公共部分即可;
(2)先把x=1代入原方程得到m的一元一次方程,求出m的值,從而確定原一元二次方程,然后利用因式分解法解一元二次方程即可得到方程的另一個解.
解答 解:(1)由題意知,m-1≠0,所以m≠1.
∵原方程有兩個不相等的實數(shù)根,
∴△=22-4(m-1)×(-3)=12m-8>0,
解得:m>$\frac{2}{3}$,
綜上所述,m的取值范圍是m>$\frac{2}{3}$且m≠1;
(2)把x=1代入原方程,得:m-1+2-3=0.
解得:m=2.
把m=2代入原方程,得:x2+2x-3=0,
解得:x1=1,x2=-3.
∴此時m的值為2,方程的另外一個根為是-3.
點評 本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義及解法.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 32016 | D. | -32016 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x<$\frac{a}$ | B. | x>$\frac{a}$ | C. | x<-$\frac{a}$ | D. | x>-$\frac{a}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
分組 | 劃記 | 頻數(shù) |
800-999 | 2 | |
1000-1199 | 6 | |
1200-1399 | ||
1400-1599 | 9 | |
1600-1799 | ||
1800-2000 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com