【題目】已知:拋物線y=2ax2﹣ax﹣3(a+1)與x軸交于點AB(點A在點B的左側(cè)).
(1)不論a取何值,拋物線總經(jīng)過第三象限內(nèi)的一個定點C,請直接寫出點C的坐標;
(2)如圖,當AC⊥BC時,求a的值和AB的長;
(3)在(2)的條件下,若點P為拋物線在第四象限內(nèi)的一個動點,點P的橫坐標為h,過點P作PH⊥x軸于點H,交BC于點D,作PE∥AC交BC于點E,設(shè)△ADE的面積為S,請求出S與h的函數(shù)關(guān)系式,并求出S取得最大值時點P的坐標.
【答案】(1)第三象限內(nèi)的一個定點C為(﹣1,﹣3);(2)a=,AB=;(3)S=﹣h2+h﹣,當h=時,S的最大值為,此時點P(,﹣ ).
【解析】
(1)對拋物線解析式進行變形,使a的系數(shù)為0,解出x的值,即可確定點C的坐標;
(2)設(shè)函數(shù)對稱軸與x軸交點為M,根據(jù)拋物線的對稱軸可求出M的坐標,然后利用勾股定理求出CM的長度,再利用直角三角形的斜邊的中線等于斜邊的一半求出AB的長度,則A,B兩點的坐標可求,再將A,B兩點代入解析式中即可求出a的值;
(3)過點E作EF⊥PH于點F,先用待定系數(shù)法求出直線BC的解析式,然后將P,D的坐標用含h的代數(shù)式表示出來,最后利用S=S△ABE﹣S△ABD=×AB×(yD﹣yE)求解
(1)y=2ax2﹣ax﹣3(a+1)=a(2x2﹣x﹣3)﹣3,
令2x2﹣x﹣3=0,解得:x=或﹣1,
故第三象限內(nèi)的一個定點C為(﹣1,﹣3);
(2)函數(shù)的對稱軸為:x=,
設(shè)函數(shù)對稱軸與x軸交點為M,則其坐標為:(,0),
則由勾股定理得CM=,
則AB=2CM= ,
∴
則點A、B的坐標分別為:(﹣3,0)、(,0);
將點A的坐標代入函數(shù)表達式得:18a+3a﹣3a﹣3=0,
解得:a= ,
函數(shù)的表達式為:y=(x+3)(x﹣)=x2﹣x﹣ ;
(3)過點E作EF⊥PH于點F,
設(shè):∠ABC=α,則∠ABC=∠HPE=∠DEF=α,
設(shè)直線BC的解析式為
將點B、C坐標代入一次函數(shù)表達式
得 解得:
∴直線BC的表達式為:,
設(shè)點P(h,),則點D(h,),
故tan∠ABC=tanα= ,則sinα= ,
yD﹣yE=DEsinα=PDsinαsinα,
S=S△ABE﹣S△ABD
=×AB×(yD﹣yE)
=
∵﹣<0,
∴S有最大值,當h= 時,S的最大值為:,此時點P().
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.
(1)求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),某數(shù)學活動小組經(jīng)探究發(fā)現(xiàn):在⊙O中,直徑AB與弦CD相交于點P,此時PA· PB=PC·PD
(1)如圖(2),若AB與CD相交于圓外一點P, 上面的結(jié)論是否成立?請說明理由.
(2)如圖(3),將PD繞點P逆時針旋轉(zhuǎn)至與⊙O相切于點C, 直接寫出PA、PB、PC之間的數(shù)量關(guān)系.
(3)如圖(3),直接利用(2)的結(jié)論,求當 PC= ,PA=1時,陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】動點A(m+2,3m+4)在直線l上,點B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1為放置在水平桌面l上的臺燈,底座的高AB為5cm,長度均為20cm的連桿BC、CD與AB始終在同一平面上.
(1)轉(zhuǎn)動連桿BC,CD,使∠BCD成平角,∠ABC=150°,如圖2,求連桿端點D離桌面l的高度DE.
(2)將(1)中的連桿CD再繞點C逆時針旋轉(zhuǎn),經(jīng)試驗后發(fā)現(xiàn),如圖3,當∠BCD=150°時臺燈光線最佳.求此時連桿端點D離桌面l的高度比原來降低了多少厘米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高農(nóng)民抵御大病風險的能力,全國農(nóng)村推行了新型農(nóng)村合作醫(yī)療政策,農(nóng)民只需每人每年交10元錢,就可以加入合作醫(yī)療.若農(nóng)民患病住院治療,出院后到新型農(nóng)村合作醫(yī)療辦公室按一定比例報銷醫(yī)療費.小軍與同學隨機調(diào)查了他們鎮(zhèn)的一些村民,根據(jù)收集到的數(shù)據(jù)繪制成了如圖所示的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)本次共調(diào)查了多少村民被調(diào)查的村民中,有多少人參加合作醫(yī)療得到了報銷款?
(2)若該鎮(zhèn)有村民10000人,請你計算有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到9680人,假設(shè)這兩年的年增長率相同,求這個年增長率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知的半徑為5,圓心的坐標為,交軸于點,交軸于,兩點,點是上的一點(不與點、、重合),連結(jié)并延長,連結(jié),,.
(1)求點的坐標;
(2)當點在上時.
①求證:;
②如圖2,在上取一點,使,連結(jié).求證:;
(3)如圖3,當點在上運動的過程中,試探究的值是否發(fā)生變化?若不變,請直接寫出該定值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 在⊙O 中,點 C 在優(yōu)弧 AB 上, 將弧 BC 沿 BC 折疊后剛好經(jīng)過 AB的中點 D. 若⊙O的半徑為,AB=4,則 BC 的長是( )
A.2B.3C.4D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com