【題目】觀察下列三行數:
﹣2,4,﹣8,16,﹣32,64,…; ①
﹣1,2,﹣4,8,﹣16,32,…; ②
0,6,﹣6,18,﹣30,66,…;③
(1)第①行數中的第n個數為 (用含n的式子表示)
(2)取每行數的第n個數,這三個數的和能否等于﹣318?如果能,求出n的值;如果不能,請說明理由.
(3)如圖,用一個矩形方框框住六個數,左右移動方框,若方框中的六個數之和為﹣156,求方框中左上角的數.
【答案】(1)(﹣2)n;(2)n=7;(3)64.
【解析】
(1)第一行中,從第二個數起,每一個數與前一個數的比為﹣2,從而可表示出第一行中第n個數;
(2)設第一行的第n個數為x,找出圖中的數字規(guī)律,列出方程即可求出x的值;
(3)設方框中左上角的數為x,根據題意列出方程即可求出答案.
(1)第一行中,從第二個數起,每一個數與前一個數的比為﹣2,
∴第n個數為:﹣2×(﹣2)n﹣1=(﹣2)n,
(2)設第一行的第n個數為x,則:xx+(x+2)=﹣318
x=﹣128=(﹣2)7,
∴n=7,
答:n=7時滿足題意;
(3)設方框中左上角的數為x,
則:x+(﹣2x)x+(﹣x)+(x+2)+(﹣2x+2)=﹣156
x=64
答:方框中左上角的數為64.
科目:初中數學 來源: 題型:
【題目】在探索三角形全等的條件時,老師給出了定長線段,且長度為的邊所對的角為 小明和小亮按照所給條件分別畫出了圖1中的三角形,他們把兩個三角形重合在一起(如圖2),其中發(fā)現它們不全等,但他們對該圖形產生了濃厚興趣,并進行了進一步的探究:
(1)當時(如圖2),小明測得,請根據小明的測量結果,求的大;
(2)當時,將沿翻折,得到(如圖3),小明和小亮發(fā)現的大小與角度有關,請找出它們的關系,并說明理由;
(3)如圖4,在(2)問的基礎上,過點作的垂線,垂足為點,延長到點,使得,連接,請判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,∠ABG為銳角,AH∥BG,點C從點B(C不與B重合)出發(fā),沿射線BG的方向移動,CD∥AB交直線AH于點D,CE⊥CD交AB于點E,CF⊥AD,垂足為F(F不與A重合),若∠ECF=n°,則∠BAF的度數為_____度.(用n來表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】早上,小明從家里步行去學校,出發(fā)一段時間后,小明媽媽發(fā)現小明的作業(yè)本落在家里,便帶上作業(yè)本騎車追趕,途中追上小明兩人稍作停留,媽媽騎車返回,小明繼續(xù)步行前往學校,兩人同時到達.設小明在途的時間為x,兩人之間的距離為y,則下列選項中的圖象能大致反映y與x之間關系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數y=(k≠0)的圖象經過點B(3,2),點B與點C關于原點O對稱,BA⊥x軸于點A,CD⊥x軸于點D.
(1)求這個反比函數的表達式;
(2)求△ACD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以銳角△ABC的邊AC、AB為邊向外作正方形ACDE和正方形ABGF,連結BE、CF.
(1)你能找到哪兩個圖形可以通過旋轉而相互得到,并指出旋轉中心和旋轉角.
(2)試探索BE和CF有什么數量關系和位置關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,AB=AD(如圖所示).
(1)在下圖中,用尺規(guī)作∠BAD的平分線AE交BC于點E,連接DE(保留作圖痕跡,不寫作法),并證明四邊形ABED是菱形;
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖,反比例函數的圖象經過點A(1,4),直線y=2x+b(b≠0)與雙曲線在第一、三象限分別相交于P,Q兩點,與x軸、y軸分別相交于C,D兩點.(1)求k的值;(2)當b=-3時,求△OCD的面積;
(3)連接OQ,是否存在實數b,使得S△ODQ=S△OCD?若存在,請求出b的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com