【題目】如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.
【答案】S四邊形ADBC=49(cm2).
【解析】
根據(jù)直徑所對的角是90°,判斷出△ABC和△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙O于D,判斷出△ADB為等腰直角三角形,根據(jù)勾股定理求出AD、BD、AC的值,再根據(jù)S四邊形ADBC=S△ABD+S△ABC進行計算即可.
∵AB為直徑,
∴∠ADB=90°,
又∵CD平分∠ACB,即∠ACD=∠BCD,
∴,
∴AD=BD,
∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,
則AD=BD=5,
則S△ABD=ADBD=×5×5=25(cm2),
在直角△ABC中,AC==6(cm),
則S△ABC=ACBC=×6×8=24(cm2),
則S四邊形ADBC=S△ABD+S△ABC=25+24=49(cm2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時成立的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+3x﹣8的圖象與x軸交于A,B兩點(點A在點B的右側(cè)),與y軸交于點C.
(1)求直線BC的解析式;
(2)點F是直線BC下方拋物線上的一點,當△BCF的面積最大時,在拋物線的對稱軸上找一點P,使得△BFP的周長最小,請求出點F的坐標和點P的坐標;
(3)在(2)的條件下,是否存在這樣的點Q(0,m),使得△BFQ為等腰三角形?如果有,請直接寫出點Q的坐標;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某同學(xué)用圓規(guī)BOA畫一個半徑為4cm的圓,測得此時∠O=90°,為了畫一個半徑更大的同心圓,固定A端不動,將B端向左移至B′處,此時測得∠O′=120°,則BB′的長為_______厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 ABCD 中,AB=6cm,BC=8cm,動點 P 以 2cm/s 的速度從點 A 出發(fā),沿AC 向點 C 移動,同時動點 Q 以 1cm/s 的速度從點 C 出發(fā),沿 CB 向點 B 移動,設(shè) P、Q 兩點移動 ts(0<t<5)后,△CQP 的面積為 Scm2.在 P、Q 兩點移動的過程中,△CQP 的面積能否等于 3.6cm2?若能,求出此時 t 的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與半徑為2的⊙O相切于點C,點D、E、F是⊙O上三個點,EF//AB,若EF=2,則∠EDC的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點,過點B的直線交x軸負半軸于C,且OB:OC=3:1.
(1)求點B的坐標.
(2)求直線BC的解析式.
(3)直線 EF 的解析式為y=x,直線EF交AB于點E,交BC于點 F,求證:S△EBO=S△FBO.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com