【題目】問題背景:如圖 1,在中,,連接 的延長線于點(diǎn).則的值是____________

問題解決:如圖 2,在問題背景的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),點(diǎn)始終在的外部,所在直線交于點(diǎn),若,當(dāng)點(diǎn)與點(diǎn)重合時,的長是____________

【答案】

【解析】

問題背景:根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,則;

問題解決:正確畫圖形,當(dāng)點(diǎn)C與點(diǎn)M重合時,有兩種情況:如圖34,同理可得:△AOC∽△BOD,則∠AMB=90°,可得AC的長.

解:問題背景:∵RtCOD中,∠DCO=30°,∠DOC=90°

,

同理得:,

∵∠AOB=COD=90°,
∴∠AOC=BOD,
∴△AOC∽△BOD,

;

問題解決:①點(diǎn)C與點(diǎn)M重合時,如圖3,同理得:△AOC∽△BOD,
∴∠AMB=90°,

設(shè)BD=x,則AC=x

RtCOD中,∠OCD=30°,OD=1
CD=2,BC=x-2,
RtAOB中,∠OAB=30°,OB=

AB=2OB=2,

RtAMB中,由勾股定理得:AC2+BC2=AB2,

,

解得:x1=3,x2=-2,
AC=,

②點(diǎn)C與點(diǎn)M重合時,如圖4,同理得:∠AMB=90°,

設(shè)BD=x,則AC=x,

RtAMB中,由勾股定理得:AC2+BC2=AB2,

,

解得:x1=-3,x2=2,
AC=2(不合題意舍去);


綜上所述,AC的長為3,

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小微企業(yè)為加快產(chǎn)業(yè)轉(zhuǎn)型升級步伐,引進(jìn)一批AB兩種型號的機(jī)器.已知一臺A型機(jī)器比一臺B型機(jī)器每小時多加工2個零件,且一臺A型機(jī)器加工80個零件與一臺B型機(jī)器加工60個零件所用時間相等.

1)每臺A,B兩種型號的機(jī)器每小時分別加工多少個零件?

2)如果該企業(yè)計劃安排A,B兩種型號的機(jī)器共10臺一起加工一批該零件,為了如期完成任務(wù),要求兩種機(jī)器每小時加工的零件不少于72件,同時為了保障機(jī)器的正常運(yùn)轉(zhuǎn),兩種機(jī)器每小時加工的零件不能超過76件,那么AB兩種型號的機(jī)器可以各安排多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠ACB=90°BC=2,DAB上的動點(diǎn),將線段CD繞點(diǎn)C逆時針旋轉(zhuǎn)90°,得到線段CE,連接BE,則BE的最小值是(

A.-1B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“停課不停學(xué),學(xué)習(xí)不延期!”某市教育局為了解初中學(xué)生疫情期間在家學(xué)習(xí)時對一些學(xué)習(xí)方式的喜好情況,通過微信采用電子問卷的方式隨機(jī)調(diào)查了部分學(xué)生(電子調(diào)查表如圖所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖,

根據(jù)以上統(tǒng)計圖,解答下列問題:

1)本次接受調(diào)查的學(xué)生共有 人;

2)補(bǔ)全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中,扇形B的圓心角的度數(shù)是 度;

4)若該市約有16萬初中生,請估計喜歡自學(xué)(選擇選項CD)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情防控,我們一直在堅守.某居委會組織兩個檢查組,分別對居民體溫居民安全出行的情況進(jìn)行抽查.若這兩個檢查組在轄區(qū)內(nèi)的某三個校區(qū)中各自隨機(jī)抽取一個小區(qū)進(jìn)行檢查,則他們恰好抽到同一個小區(qū)的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,直線軸,軸分別交于點(diǎn),點(diǎn),拋物線經(jīng)過點(diǎn),點(diǎn)和點(diǎn),并與直線交于另一點(diǎn)

1)求拋物線的解析式;

2)如圖 2,點(diǎn)軸上一動點(diǎn),連接,當(dāng)時,求點(diǎn) 的坐標(biāo);

3)如圖 3,將拋物線平移,使其頂點(diǎn)是坐標(biāo)原點(diǎn),得到拋物線;將直線向下平移經(jīng)過坐標(biāo)原點(diǎn),交拋物線于另一點(diǎn).點(diǎn),點(diǎn)上且位于 第一象限內(nèi)一動點(diǎn),點(diǎn),軸分別交,試說明:存在一個確定的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富居民的文化生活.某社區(qū)開展跳舞、繪畫、游泳、唱歌等活動來讓居民娛樂.為了解居民對跳舞、繪畫、游泳、唱歌這四種活動(以下分別用,,,表示這四種不同活動)的喜愛情況,在“五一”勞動節(jié)期間對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.請根據(jù)以上信息回答:

1)本次參加抽樣調(diào)查的居民有多少人?

2)將不完整的條形圖補(bǔ)充完整;

3)若居民區(qū)有8000人,請估計愛唱歌的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊上的一點(diǎn),的中點(diǎn),過點(diǎn)作的平行線交的延長線于點(diǎn),且,連接

1)求證:的中點(diǎn);

2)如果,試判斷四邊形的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點(diǎn),且為雙曲線上的一點(diǎn),為坐標(biāo)平面上一動點(diǎn),垂直于軸,垂直于軸,垂足分別是、.

1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式.

2)當(dāng)點(diǎn)在直線上運(yùn)動時,直線上是否存在這樣的點(diǎn),使得的面積相等?如果存在,請求出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案