7、在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=20°,則∠PAB的度數(shù)為( 。
分析:要求∠PAB,題中已知沒有能直接求出的條件,故可作P關于AC的對稱點P′,連接AP′、P'C、PP',得出A、B、C、P'四點共圓,從而求得∠PAB的度數(shù).
解答:解:如圖,作P關于AC的對稱點P′,連接AP′、P′C、PP′,
則P′C=PC,ACP′=∠ACP.
∵AB=AC,∠BAC=80°,
∴∠ABC=∠ACB=50°,
又∵∠PBC=10°,∠PCB=20°,
∴∠BPC=150°,∠ACP=30°,∠ACP′=30°,
∴∠PCP′=60°,
∴△PCP′是等邊三角形,
∴PP′=PC,∠P′AC=∠PAC,∠P′PC=60°,
∴∠BPP′=360°-150°-60°=150°,
∴∠BPP′=∠BPC,
∴△PBP′≌△PBC,
∴∠PBP′=∠PBC=10°,
∴∠P′BC=20°,∠ABP′=30° 又∠ACP′=30°,
∴∠ABP′=∠ACP′,
∴A、B、C、P′四點共圓,
∴∠PAC=∠P′AC=∠P′BC=20°,
∴∠PAB=60°.
故選B.
點評:本題考查了等腰三角形的性質(zhì),等邊三角形的性質(zhì)及全等三角形的判定,難度較大.輔助線的作出是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉,使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習冊答案