【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)的圖象在第二象限交于點(diǎn)C,CE⊥x軸,垂足為點(diǎn)E,,OB=2,OE=1.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF,如果SBAF=4SDFO,求點(diǎn)D的坐標(biāo).
【答案】(l) y=;(2) D(,-2).
【解析】(1)由邊的關(guān)系可得出BE=6,通過解直角三角形可得出CE=3,結(jié)合函數(shù)圖象即可得出點(diǎn)C的坐標(biāo),再根據(jù)點(diǎn)C的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可求出反比例函數(shù)系數(shù)m,由此即可得出結(jié)論;
(2)由點(diǎn)D在反比例函數(shù)在第四象限的圖象上,設(shè)出點(diǎn)D的坐標(biāo)為(n,-)(n>0).通過解直角三角形求出線段OA的長(zhǎng)度,再利用三角形的面積公式利用含n的代數(shù)式表示出S△BAF,根據(jù)點(diǎn)D在反比例函數(shù)圖形上利用反比例函數(shù)系數(shù)k的幾何意義即可得出S△DFO的值,結(jié)合題意給出的兩三角形的面積間的關(guān)系即可得出關(guān)于n的分式方程,解方程,即可得出n值,從而得出點(diǎn)D的坐標(biāo).
(1)∵OB=2,OE=1,
∴BE=OB+OE=3.
∵CE⊥x軸,
∴∠CEB=90°.
在Rt△BEC中,∠CEB=90°,BE=3,sin∠ABO=,
∴tan∠ABO=,
∴CE=BEtan∠ABO=3×=,
結(jié)合函數(shù)圖象可知點(diǎn)C的坐標(biāo)為(-1,).
∵點(diǎn)C在反比例函數(shù)y=的圖象上,
∴k=-1×=-,
∴反比例函數(shù)的解析式為y=-.
(2)∵點(diǎn)D在反比例函數(shù)y=-第四象限的圖象上,
∴設(shè)點(diǎn)D的坐標(biāo)為(n,-)(n>0).
在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=,
∴OA=OBtan∠ABO=2×=1.
∵S△BAF=AFOB=(OA+OF)OB=(1+)×2=1+.
∵點(diǎn)D在反比例函數(shù)y=-第四象限的圖象上,
∴S△DFO=×|-|=.
∵S△BAF=4S△DFO,
∴1+=4×,
解得:n=,
經(jīng)驗(yàn)證,n=是分式方程的解,
∴點(diǎn)D的坐標(biāo)為(,-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下數(shù)表是由從1開始的連續(xù)自然數(shù)組成,觀察規(guī)律并完成各題的填空.
(1)表中第6行的最后一個(gè)數(shù)是_____,第n行的最后一個(gè)數(shù)是_____;
(2)若用(a,b)表示一個(gè)數(shù)在數(shù)表中的位置,如9的位置是(4,3),則2018所在的位置是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比、轉(zhuǎn)化等數(shù)學(xué)思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整.
已知.
(1)觀察發(fā)現(xiàn)
如圖①,若點(diǎn)是和的角平分線的交點(diǎn),過點(diǎn)作分別交、于、,填空: 與、的數(shù)量關(guān)系是________________________________________.
(2)猜想論證
如圖②,若點(diǎn)是外角和的角平分線的交點(diǎn),其他條件不變,填: 與、的數(shù)量關(guān)系是_____________________________________.
(3)類比探究
如圖③,若點(diǎn)是和外角的角平分線的交點(diǎn).其他條件不變,則(1)中的關(guān)系成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)寫出關(guān)系式,再證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=,E是邊BC的中點(diǎn),F是AB上一點(diǎn),線段AE、CF交于點(diǎn)G,且CE=EG,將ABF沿CF翻折,使得點(diǎn)B落在點(diǎn)M,連接GM并延長(zhǎng)交AD于點(diǎn)N,則AGN的面積為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.
(1)判斷ABC的形狀,并說明理由;
(2)如圖1,點(diǎn)P為直線BC下方的二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與B、C不重合),過點(diǎn)P作y軸的平行線交x軸于點(diǎn)E.當(dāng)PBC面積的最大值時(shí),點(diǎn)F為線段BC一點(diǎn)(不與點(diǎn)、重合),連接EF,動(dòng)點(diǎn)G從點(diǎn)E出發(fā),沿線段EF以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)F,再沿FC以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)C后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)G在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少?
(3)如圖2,將ACO沿射線CB方向以每秒個(gè)單位的速度平移,記平移后的ACO為A1C1O1,連接A A1,直線A A1交拋物線與點(diǎn)M,設(shè)平移的時(shí)間為t秒,當(dāng)A MC1為等腰三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線交于A,B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為2.
(1)求點(diǎn)B的坐標(biāo);
(2)P為線段AB上一點(diǎn)(不包括端點(diǎn)),P點(diǎn)的縱坐標(biāo)為a,作PN⊥y軸,垂足為N,交雙曲線于點(diǎn)M,求的最大值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),點(diǎn)分別是和的中點(diǎn).
(1)若點(diǎn)恰好是的中點(diǎn),則_______;若,則_________;
(2)隨著點(diǎn)位置的改版,的長(zhǎng)是否會(huì)改變?如果改變,請(qǐng)說明原因;如果不變,請(qǐng)求出的長(zhǎng);
(3)知識(shí)遷移:如圖②,已知,過角的內(nèi)部任意一點(diǎn)畫射線,若分別平分和,試說明的度數(shù)與射線的位置無關(guān).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com