【題目】如圖1,RtABC中,∠A90°,ABAC,點DBC邊的中點連接AD,則易證ADBDCD,即ADBC;如圖2,若將題中ABAC這個條件刪去,此時AD仍然等于BC

理由如下:延長ADH,使得AH2AD,連接CH,先證得ABD≌△CHD,此時若能證得ABC≌△CHA

即可證得AHBC,此時ADBC,由此可見倍長過中點的線段是我們?nèi)切巫C明中常用的方法.

1)請你先證明ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;

2)現(xiàn)將圖1ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出BDECDF都是等腰直角三角形.BEDE,CFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若圖2ABC也進行這樣的折疊(如圖4),此時線段BE、CF、EF還有這樣的關(guān)系式嗎?若有,請證明;若沒有,請舉反例.

3)在(2)的條件下,將圖3中的DEF繞著點D旋轉(zhuǎn)(如圖5),射線DEDF分別交AB、AC于點EF,此時(2)中結(jié)論還成立嗎?請說明理由.圖4中的DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.

【答案】(1)詳見解析;(2)有這樣分關(guān)系式;(3)EF2BE2+CF2.

【解析】

1)想辦法證明ABCH,推出∠BAC=∠ACH,再利用SAS證明ABC≌△CHA即可.

2)有這樣分關(guān)系式.如圖4中,延長EDH山頂DHDE.證明EDB≌△HDSAS),推出∠B=∠HCD,BECH,∠FCH90°,利用勾股定理,線段的垂直平分線的性質(zhì)即可解決問題.

3)圖5,圖6中,上面的關(guān)系式仍然成立.

1)證明:如圖2中,

BDDC,∠ADB=∠HDCADHD,

∴△ADB≌△HDCSAS),

∴∠B=∠HCD,ABCH,

ABCH

∴∠BAC+ACH180°,

∵∠BAC90°,

∴∠ACH=∠BAC90°,

ACCA,

∴△BAC≌△HCASAS),

AHBC,

ADDHBDDC,

ADBC

結(jié)論:直角三角形斜邊上的中線等于斜邊的一半.

2)解:有這樣分關(guān)系式.

理由:如圖4中,延長EDH山頂DHDE

EDDH,∠EDB=∠HDC,DBDC

∴△EDB≌△HDCSAS),

∴∠B=∠HCDBECH,

∵∠B+ACB90°,

∴∠ACB+HCD90°,

∴∠FCH90°,

FH2CF2+CH2,

DFEH,EDDH,

EFFH,

EF2BE2+CF2

3)圖5,圖6中,上面的關(guān)系式仍然成立.結(jié)論:EF2BE2+CF2

證明方法類似(2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題.

①(x2+3)(3x21

②(4x2y8x3y3)÷(﹣2x2y

③[(m+3)(m3)]2

102×100+105÷103

,其中x滿足x2x10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC平分鈍角∠BAE交過B點的直線于點CBD平分∠ABCAC于點D,且∠BAD+ABD90°.

1)求證:AEBC;

2)點F是射線BC上一動點(點F不與點B,C重合),連接AF,與射線BD相交于點P

(。┤鐖D1,若∠ABC45°,AFAB,試探究線段BFCF之間滿足的數(shù)量關(guān)系;

(ⅱ)如圖2,若AB10,SABC30,∠CAF=∠ABD,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點,點上,連接

(1)如圖,若,,,求的度數(shù);

(2),,直接寫出 (的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=D=90°,在BC,CD上分別找一點M,N,使三角形AMN周長最小時,則∠MAN的度數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,對于平面內(nèi)的點P和兩條曲線給出如下定義:若從點P任意引出一條射線分別與、交于,總有是定值,我們稱曲線“曲似”,定值為“曲似比”,點P為“曲心”.

例如:如圖2,以點為圓心,半徑分別為、都是常數(shù)的兩個同心圓,從點任意引出一條射線分別與兩圓交于點M、N,因為總有是定值,所以同心圓曲似,曲似比為,“曲心”為

在平面直角坐標系xOy中,直線與拋物線、分別交于點A、B,如圖3所示,試判斷兩拋物線是否曲似,并說明理由;

的條件下,以O為圓心,OA為半徑作圓,過點Bx軸的垂線,垂足為C,是否存在k值,使與直線BC相切?若存在,求出k的值;若不存在,說明理由;

、的條件下,若將“”改為“”,其他條件不變,當存在與直線BC相切時,直接寫出m的取值范圍及km之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.

1)若他去買一瓶飲料,則他買到奶汁的概率是 ;

2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

求y關(guān)于x的函數(shù)關(guān)系式;

該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校學生的課余興趣愛好情況,某調(diào)查小組設(shè)計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計圖:

根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:

(1)本次抽樣調(diào)查中的學生人數(shù)是多少人;

(2 )補全條形統(tǒng)計圖;

(3)若該校共有2000名學生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學生人數(shù);

(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.

查看答案和解析>>

同步練習冊答案