分析 連接AC,延長CE交AG于M,由正方形的性質(zhì)得出AB=BC,BG=BE,∠ABC=∠GBE=90°,∠BAC=∠BCA=45°,證出∠ABG=∠CBE,由SAS證明ABG≌△CBE,得出∠BAG=∠BCE,證出∠ECA+∠MAC=90°,即可得出結(jié)論.
解答 解:CE⊥AG;理由如下:
連接AC,延長CE交AG于M,如圖所示:
∵四邊形ABCD和四邊形GBEF是正方形,
∴AB=BC,BG=BE,∠ABC=∠GBE=90°,∠BAC=∠BCA=45°,
∴∠ABG=∠CBE,
在△ABG和△CBE中,
$\left\{\begin{array}{l}{AB=BC}&{\;}\\{∠ABG=∠CBE}&{\;}\\{BG=BE}&{\;}\end{array}\right.$,
∴ABG≌△CBE(SAS),
∴∠BAG=∠BCE,
∴∠ECA+∠MAC=∠ECA+∠BAG+∠BAC=∠ECA+∠BCE+45°=45°+45°=90°,
∴∠AMC=90°,
∴CE⊥AG.
點(diǎn)評 本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、垂線的證明方法;熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com