【題目】如圖,在ABCDCB中,ABDC,ACDB,ACDB交于點M

1)求證:ABC≌△DCB;

2)過點CCNBD,過點BBNAC,CNBN交于點N,試判斷BNC的形狀,并證明你的結論.

【答案】1)見解析;(2BNC是等腰三角形,證明見解析

【解析】

1)由SSS可證△ABC≌△DCB;

2△BNC是等腰三角形,可先證明四邊形BMCN是平行四邊形,由(1)知,∠MBC∠MCB,可得BMCM,于是就有四邊形BMCN是菱形,則BNCN

1)證明:如圖,在△ABC△DCB中,

∴△ABC≌△DCBSSS);

2)解:△BNC是等腰三角形.證明如下:

∵CN∥BD,BN∥AC,

四邊形BMCN是平行四邊形,

由(1)知,∠MBC∠MCB,

∴BMCM(等角對等邊),

四邊形BMCN是菱形,

∴BNCN.∴△BNC是等腰三角形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有一個二次函數(shù)的圖象,三位同學分別說出了它的一些特點:

甲:對稱軸為直線x=4

乙:與x軸兩個交點的橫坐標都是整數(shù).

丙:與y軸交點的縱坐標也是整數(shù),且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數(shù)解析式__________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對飲水品質的需求越來越高.孝感市槐蔭公司根據(jù)市場需求代理、兩種型號的凈水器,每臺型凈水器比每臺型凈水器進價多200元,用5萬元購進型凈水器與用4.5萬元購進型凈水器的數(shù)量相等.

(1)求每臺型、型凈水器的進價各是多少元;

(2)槐蔭公司計劃購進兩種型號的凈水器共50臺進行試銷,其中型凈水器為臺,購買資金不超過9.8萬元.試銷時型凈水器每臺售價2500元,型凈水器每臺售價2180元.槐蔭公司決定從銷售型凈水器的利潤中按每臺捐獻元作為公司幫扶貧困村飲水改造資金,設槐蔭公司售完50臺凈水器并捐獻扶貧資金后獲得的利潤為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快、慢兩車分別從相距480千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時,然后以原速度繼續(xù)向甲地行駛,到達甲地后停止行駛;快車到達乙地后,立即按原路原速返回甲地,(快車掉頭的時間忽略不計),快、慢兩車距乙地的路程y(千米)與所用時間x(小時)之間的函數(shù)圖象如圖.快車到達甲地時,慢車距離甲地__米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已等腰RtABC中,∠BAC90°.點D從點B出發(fā)沿射線BC移動,以AD為腰作等腰RtADE,∠DAE90°.連接CE

(1)如圖,求證:△ACE≌△ABD;

(2)D運動時,∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;

(3)AC,當CD1時,請直接寫出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2經過點A(﹣2,﹣8).

(1)求此拋物線的函數(shù)解析式;

(2)寫出這個二次函數(shù)圖象的頂點坐標、對稱軸;

(3)判斷點B(﹣1,﹣4)是否在此拋物線上;

(4)求出此拋物線上縱坐標為﹣6的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a,b,c表示三條公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BCD=110°,AB的垂直平分線交對角線AC于點F,E為垂足,連接DF,則∠CDF等于( 。

A. 15° B. 25° C. 45° D. 55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

同步練習冊答案