【題目】如圖 (1),已知△ABC是等邊三角形,以BC為直徑的⊙O交AB、AC于D、E.求證:
(1)△DOE是等邊三角形.
(2)如圖(2),若∠A=60°,AB≠AC , 則(1)中結(jié)論是否成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.
【答案】
(1)
證明:∵△ABC為等邊三角形,
∴∠B=∠C=60°.
∵OB=OC=OE=OD,∴△OBD和△OEC都為等邊三角形.
∴∠BOD=∠EOC=60°.∴∠DOE=60°.
∴△DOE為等邊三角形.
(2)
解:當(dāng)∠A=60°,AB≠AC時(shí),(1)中的結(jié)論仍然成立.
證明:連結(jié)CD.∵BC為⊙O的直徑,
∴∠BDC=90°.∴∠ADC=90°.
∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.
∵OD=OE,∴△DOE為等邊三角形.
【解析】(1)證明:∵△ABC為等邊三角形,
∴∠B=∠C=60°.
∵OB=OC=OE=OD,∴△OBD和△OEC都為等邊三角形.
∴∠BOD=∠EOC=60°.∴∠DOE=60°.
∴△DOE為等邊三角形.
(2)當(dāng)∠A=60°,AB≠AC時(shí),(1)中的結(jié)論仍然成立.
證明:連結(jié)CD.∵BC為⊙O的直徑,
∴∠BDC=90°.∴∠ADC=90°.
∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.
∵OD=OE,∴△DOE為等邊三角形.
【考點(diǎn)精析】本題主要考查了等邊三角形的性質(zhì)和圓周角定理的相關(guān)知識(shí)點(diǎn),需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)面積為1的正方形,經(jīng)過(guò)一次“生長(zhǎng)”后,在它的左右肩上生出兩個(gè)小正方形(如圖1),其中,三個(gè)正方形圍成的三角形是直角三角形,再經(jīng)過(guò)一次“生長(zhǎng)”后,生出了4個(gè)正方形(如圖2),如果按此規(guī)律繼續(xù)“生長(zhǎng)”下去,它將變得“枝繁葉茂”.在“生長(zhǎng)”了2 017次后形成的圖形中所有正方形的面積和是( )
圖1 圖2
A. 2015 B. 2016 C. 2017 D. 2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家超市以相同的價(jià)格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計(jì)購(gòu)買商品超出300元之后,超出部分按原價(jià)8折優(yōu)惠;在乙超市累計(jì)購(gòu)買商品超出200元之后,超出部分按原價(jià)8.5折優(yōu)惠.設(shè)顧客預(yù)計(jì)累計(jì)購(gòu)物元().
(1)請(qǐng)用含的代數(shù)式分別表示顧客在兩家超市購(gòu)物所付的費(fèi)用;
(2)李明準(zhǔn)備購(gòu)買500元的商品,你認(rèn)為他應(yīng)該去哪家超市?請(qǐng)說(shuō)明理由;
(3)計(jì)算一下,李明購(gòu)買多少元的商品時(shí),到兩家超市購(gòu)物所付的費(fèi)用一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)()與函數(shù)()所截,當(dāng)直線l向右平移4個(gè)單位時(shí),直線l被兩函數(shù)圖象所截得的線段掃過(guò)的面積為__________平方單位.
【答案】8
【解析】∵y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)y=(x>0)與函數(shù)y=+2(x>0)所截,∴設(shè)它們的交點(diǎn)為A,C,∴AC=2,∵直線l向右平移4個(gè)單位,∴CD=4,∴直線l被兩函數(shù)圖象所截得的線段掃過(guò)的面積為 2×4=8平方單位.故答案為8.
【題型】填空題
【結(jié)束】
14
【題目】函數(shù)的圖象如右圖所示,則結(jié)論:
①兩函數(shù)圖象的交點(diǎn)的坐標(biāo)為; ②當(dāng)時(shí), ;
③當(dāng)時(shí), ; ④當(dāng)逐漸增大時(shí), 隨著的增大而增大, 隨著的增大而減。
其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y= 和y= 在第一象限的圖像,點(diǎn)P1,P2,P3,……,P2011都是曲線上的點(diǎn),它們的橫坐標(biāo)分別為x1,x2,x3,……,x2011,縱坐標(biāo)分別為1,3,5,7……,是連續(xù)的2011個(gè)奇數(shù),過(guò)各個(gè)P點(diǎn)作y的平行線,與另一雙曲線交點(diǎn)分別是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2012(x2012,y2012),則y2012=___________
【答案】
【解析】由題意得,P2012(x2012,4023),因?yàn)辄c(diǎn)P2012在y=的圖象上,所以x2012=,把x2012=代入 y=中得y2012==,故答案為.
【題型】填空題
【結(jié)束】
17
【題目】已知y是x的反比例函數(shù),且當(dāng)x=-4時(shí),y=,
(1)求這個(gè)反比例函數(shù)關(guān)系式和自變量x的取值范圍;
(2)求當(dāng)x=6時(shí)函數(shù)y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有下列說(shuō)法:①若DE∥AB,則∠DEF+∠EFB=180;
②能與∠DEF構(gòu)成內(nèi)錯(cuò)角的角的個(gè)數(shù)有2個(gè);③能與∠BFE構(gòu)
成同位角的角的個(gè)數(shù)有2個(gè);④能與∠C構(gòu)成同旁內(nèi)角的角的個(gè)數(shù)有4個(gè).其中結(jié)論正確的是( )
A. ①② B. ③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖17-Z-12所示,等腰三角形ABC的底邊長(zhǎng)為8 cm,腰長(zhǎng)為5 cm,一動(dòng)點(diǎn)P在底邊上從點(diǎn)B向點(diǎn)C以0.25 cm/s的速度移動(dòng),請(qǐng)你探究:當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒時(shí),點(diǎn)P與頂點(diǎn)A的連線AP與腰垂直?
圖17-Z-12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時(shí)針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于( 。
A.10
B.11
C.12
D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=10,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,AG=2.5,則△CEF的周長(zhǎng)為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com