分析 (1)由旋轉(zhuǎn)性質(zhì)可得∠DAE=∠CAB、AE=AD,結(jié)合AB=AC根據(jù)$\frac{AE}{AB}$=$\frac{AD}{AC}$且∠DAE=∠CAB可證得;
(2)由三角形外心可得DB=DA=DC,結(jié)合△ADC≌△AEB知DB=DA=BE=AE,即可判定四邊形AEBD的形狀.
解答 證明:(1)∵△ADC 繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AEB,
∴△ADC≌△AEB.
∴∠BAE=∠CAD,AE=AD.
∴∠DAE=∠CAB.
∵AB=AC,
∴$\frac{AE}{AB}$=$\frac{AD}{AC}$.
∴△AED∽△ABC.
(2)四邊形AEBD是菱形.
∵D是△ABC的外心,
∴DB=DA=DC.
又∵△ADC≌△AEB,
∴AE=AD,BE=DC.
∴DB=DA=BE=AE.
∴四邊形AEBD是菱形.
點(diǎn)評(píng) 本題主要考查相似三角形的判定及菱形的判定,熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外心的性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x+y=5}\\{\frac{1}{x}+\frac{1}{y}=\frac{5}{6}}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{{x}^{2}+y=10}\\{x+y=-2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+y=8}\\{xy=-5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=1}\\{x+y=-3}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com