某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲五類電視節(jié)目最喜愛(ài)的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)以上的信息,回答下列問(wèn)題:

(1) 本次共調(diào)查了_____名學(xué)生,其中最喜愛(ài)戲曲的有_____人;在扇形統(tǒng)計(jì)圖中,最喜愛(ài)體育的對(duì)應(yīng)扇形的圓心角大小是______;

(2) 根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛(ài)新聞的人數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年重慶市榮昌區(qū)七年級(jí)上期末數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,點(diǎn)A、O、B在一條直線上,∠AOC=140°,OD是∠BOC的平分線,則∠COD= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016年初中畢業(yè)升學(xué)考試(湖北孝感卷)數(shù)學(xué)(解析版) 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c的頂點(diǎn)M的坐標(biāo)為(﹣1,﹣4),且與x軸交于點(diǎn)A,點(diǎn)B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.

(1)填空:b= ,c= ,直線AC的解析式為 ;

(2)直線x=t與x軸相交于點(diǎn)H.

①當(dāng)t=﹣3時(shí)得到直線AN(如圖1),點(diǎn)D為直線AC下方拋物線上一點(diǎn),若∠COD=∠MAN,求出此時(shí)點(diǎn)D的坐標(biāo);

②當(dāng)﹣3<t<﹣1時(shí)(如圖2),直線x=t與線段AC,AM和拋物線分別相交于點(diǎn)E,F(xiàn),P.試證明線段HE,EF,F(xiàn)P總能組成等腰三角形;如果此等腰三角形底角的余弦值為,求此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016年初中畢業(yè)升學(xué)考試(湖北孝感卷)數(shù)學(xué)(解析版) 題型:選擇題

在2016年體育中考中,某班一學(xué)習(xí)小組6名學(xué)生的體育成績(jī)?nèi)缦卤,則這組學(xué)生的體育成績(jī)的眾數(shù),中位數(shù),方差依次為( )

成績(jī)(分)

27

28

30

人數(shù)

2

3

1

A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016年初中畢業(yè)升學(xué)考試(湖北武漢卷)數(shù)學(xué)(解析版) 題型:解答題

拋物線y=ax2+c與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P為拋物線上,且位于x軸下方.

(1)如圖1,若P(1,-3)、B(4,0),

① 求該拋物線的解析式;

② 若D是拋物線上一點(diǎn),滿足∠DPO=∠POB,求點(diǎn)D的坐標(biāo);

(2) 如圖2,已知直線PA、PB與y軸分別交于E、F兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016年初中畢業(yè)升學(xué)考試(湖北武漢卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,在□ABCD中,E為邊CD上一點(diǎn),將△ADE沿AE折疊至△AD′E處,AD′與CE交于點(diǎn)F.若∠B=52°,∠DAE=20°,則∠FED′的大小為_(kāi)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016年初中畢業(yè)升學(xué)考試(湖北武漢卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖是由一個(gè)圓柱體和一個(gè)長(zhǎng)方體組成的幾何體,其左視圖是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016年初中畢業(yè)升學(xué)考試(湖北隨州卷)數(shù)學(xué)(解析版) 題型:填空題

如圖(1),PT與⊙O1相切于點(diǎn)T,PAB與⊙O1相交于A、B兩點(diǎn),可證明△PTA∽△PBT,從而有PT2=PA•PB.請(qǐng)應(yīng)用以上結(jié)論解決下列問(wèn)題:如圖(2),PAB、PCD分別與⊙O2相交于A、B、C、D四點(diǎn),已知PA=2,PB=7,PC=3,則CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:解答題

數(shù)學(xué)活動(dòng)課上,某學(xué)習(xí)小組對(duì)有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).

(1)初步嘗試

如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;

(2)類比發(fā)現(xiàn)

如圖2,若AD=2AB,過(guò)點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;

(3)深入探究

如圖3,若AD=3AB,探究得:的值為常數(shù)t,則t=

查看答案和解析>>

同步練習(xí)冊(cè)答案